418
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Effects of pH and Acid End-Products on Acid Production in Oral Streptococci

Pages 113-119 | Received 27 Oct 1994, Published online: 11 Jul 2009

References

  • Abbe K, Takahashi S, Yamada T. Involvement of oxygen sensitive pyruvate formate lyase in mixed acid fermentation by Streptococcus mutans under strictly anaerobic conditions. Journal of Bacteriology 1982; 152: 175–182
  • Bakker E P. The role of alkali-cation transport in energy coupling of neutrophilic and acidophilic bacteria: an assessment of methods and concepts. F.E.M.S. Microbiology Reviews 1990; 75: 319–334
  • Bender G R., Sutton S VW, Marquis R E. Proton permeabilities, acidurance and membrane ATPases of oral streptococci. Infection and Immunity 1986; 53: 331–338
  • Bunick F J., Kashket S. Enolases from fluoride-sensitive and fluoride-resistant streptococci. Infection and Immunity 1981; 34: 856–863
  • Dashper S G., Reynolds E C. pH regulation by Streptococcus mutans. Journal of Dental Research 1992; 11: 1159–1165
  • Dibdin G H. Computer modelling of dental plaque in relation to dental caries. Microbial Ecology in Health and Disease 1990; 3: v–viii
  • Distler W, Kagermeier A, Hickel R, Kröncke A. Lactate influx and efflux in Streptococcus mutans group and Streptococcus sanguis. Caries Research 1981; 23: 252–255
  • Dykhuizen D, Hartl D. Transport by the lactose permease of Escherichia coli as the basis of lactose killing. Journal of Bacteriology 1978; 135: 876–882
  • Fitzgerald R J. The microbial ecology of plaque in relation to dental caries. Microbial Aspects of Dental Caries II, HM Stiles, WJ Loesche, TC O'brien. IRL, Washington, D.C. 1976; 859–869
  • Edgar W M., Dodds M WJ, Higham S M. Changes in the carboxylic acid and free amino acid profiles in human dental plaque after a carbohydrate challenge in situ. Biochemistry Society Transactions 1986; 14: 977
  • Gustafson G. Caries. Oral Pathology of Students. Scandanavian University Books, Stockholm 1975; Vol 1: 1–8
  • Hardie J M. Gram-positive cocci: Genus Streptococcus. Bergeys Manual of Systematic Bacteriology, PHA Sneath, NS Mair, ME Sharpe, JG Holt. Williams and Wilkins, Baltimore 1986; Vol 2: 1043–1071
  • Harold F M., Levin E. Lactic acid translocation: Terminal step in glycolysis by Streptococcus faecalis. Journal of Bacteriology 1974; 117: 1141–1148
  • Harold F M., Parvlasova E, Baarda J R. A transmembrane pH gradient in Streptococcus faecalis: origin and dissipation by proton conductors and N, N′-dicyclohexylcarbodiimide. Biochemica et Biophysica Acta 1970; 196: 235–244
  • Hayes M L., Roden R. The effect of potassium fluoride and potassium laurate on pH gradients in Streptococcus downei. Microbial Ecology in Health and Disease 1990; 3: 121–128
  • Keevil C W., Marsh P D., Ellwood D C. Regulation of glucose metabolism in oral streptococci through independent pathways of glucose-1-phosphate formation. Journal of Bacteriology 1984; 157: 560–567
  • Kobayashi Suzuki H. T., Unemoto Y. Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton translocating ATPase. Journal of Biological Chemistry 1986; 261: 627–630
  • Macpherson L MD, Dawes C. Effects of salivary film velocity on pH changes in an artificial plaque containing Streptococcus oralis, after exposure to sucrose. Journal of Dental Research 1991; 70: 1230–1234
  • Margolis H C., Duckworth J H., Moreno E C. Composition of pooled resting plaque fluid from caries-free and caries-susceptible individuals. Journal of Dental Research 1988; 67: 1468–1475
  • Margolis H C., Moreno E C. Composition of plaque fluid from caries-free and caries-positive individuals following sucrose exposure. Journal of Dental Research 1992; 71: 1776–1784
  • Marsh P D. Oral Microbiology. First edition. Thomas Nelson and Sons Ltd, London 1980
  • Marsh P D., Keevil C W. Environmental regulation of glycolysis in dental plaque. Factors Relating to Demineralisation and Remineralisation of the Teeth, SA Leach. IRL Press, Oxford 1985; 51–59
  • Marsh P D., Martin M V. Oral Microbiology, 3rd edition. Chapman and Hall, London 1992
  • McKee A S., McDermid A S., Ellwood D C., Marsh P D. The establishment of reproducible complex communities of oral bacteria in the chemostat using defined inocula. Journal of Applied Bacteriology 1985; 59: 263–275
  • Otto R, Sonnenberg A SM, Veldkamp H, Konings W N. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proceedings of the National Academy of Science USA 1980; 77: 5502–5506
  • Sokal R R., Rohlf F J. Single classification of variance. Biometry (2nd edition). Freeman, USA 1981; 208–270
  • Sutton S VW, Marquis R E. Membrane associated and solubilised ATPases of Streptococcus mutans and Streptococcus sanguis. Journal of Dental Research 1987; 66: 1095–1098
  • Takahashi S, Abbe K, Yammada T. Purification of pyruvate formate lyase from Streptococcus mutans and its regulatory properties. Journal of Bacteriology 1982; 149: 1034–1040
  • Takahashi N, Abbe K, Takahashi-Abbe S, Yamada T. Oxygen sensitivity of sugar metabolism and interconversions of pyruvate formate lyase in intact cells of Streptococcus mutans and Streptococcus sanguis. Infection and Immunity 1987; 55: 652–656
  • Wegman M R., Eisenberg A D., Curzon M EJ, Handelman S L. Effects of fluoride, lithium and strontium on intracellular polysaccharide accumulation in Streptococcus mutans and Actinomyces viscosus. Journal of Dental Research 1984; 63: 1126–1129
  • Wharton C W., Szawelski R J. Half time analysis of the integrated Michaelis equation. Biochemical Journal 1982; 203: 351–360
  • Whiley R A., Russell R RB, Hardie J M., Beighton D. Streptococcus downei (sp. nov.): proposal of a new species for strains previously described as Streptococcus mutans serotype h. Journal of Dental Research 1987; 66: 871
  • Yamada T, Takahashi-Abbe S, Abbe K. Effects of oxygen on pyruvate formate lyase in situ and sugar metabolism of Streptococcus mutans and Streptococcus sanguis. Infection and Immunity 1985; 47: 129–134