36
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Correlation between Profile of Circulating Mononuclear Cells and Clinical Manifestations in Patients with Pemphigus Vulgaris

, , , , , & show all
Pages 115-128 | Received 20 Aug 1999, Accepted 17 Feb 2000, Published online: 07 Jul 2009

References

  • Karpati S, Amagai M, Prussick R, Cehrs K, Stanley J R. Pemphigus vulgaris antigen, a desmoglein tipe cahderin is localized within keratinocyte desmosomes. J Cell Biol 1993; 122: 409–15
  • Beutner E H, Jordon R E. Demostration of skin antibodies in sera patients with pemphigus vulgaris by indirect immun-ofluorescent staining. Proc Soc Exp Biol Med 1964; 117: 505–10
  • Bhol K, Natarajan K, Nagarwalla N., et al. Correlation of peptide specificity and IgG subclass with pathogenic and nonpathogenic autoantibodies in pemphigus vulgaris: a model for autoimmunity. Proc Natl Acad Sci USA 1995; 92: 5239–43
  • Emery D J, Diaz L A, Fairley J A, et al. Pemphigus foliaceus and pemphigus vulgaris autoantibodies react with the extracellular domain of desmoglein-1. J Invest Dermatol 1995; 104: 323–8
  • Joly P, Gilbert D, Thomine E, et al. Identification of a new antibody population directed against a desmosomal plaque antigen in pemphigus vulgaris and pemphigus foliaceus. J Invest Dermatol 1997; 108: 469–75
  • Mascaro J M, Jr, Espafia A, Liu Z, et al. Mechanisms of acan-tholysis in pemphigus vulgaris: role of IgG valence. Clin Immunol Immunopathol 1997; 85: 90–6
  • Lin M S, Mascaro J. M., Jr, Liu Z, Espafia A, Diaz L A. The desmosome and hemidesmosome in cutaneous autoimmunity. Clin Exp Immunol 1997; 107: 9–15
  • Nguyen V T, Lee T X, Ndoye A, et al. The pathophysiological significance of nondesmoglein targests of pemphigus autoimmunity. Arch Dermatol 1998; 134: 971–80
  • Lin M S, Swartz S J, Lopez A, et al. Development and characterization of desmoglein-3 specific T cells from patients with pemphigus vulgaris. J Clin Invest 1997; 99: 31–40
  • Lin M S, Swartz S J, Lopez A, et al. T lymphocytes from a subset of patients with pemphigus vulgaris respond to both desmoglein-3 and desmoglein-1. J Invest Dermatol 1997; 109: 734–7
  • Zillikens D, Ambach A, Zentner A, et al. Evidence for cell-mediated immune mechanisms in the pathology of pemphigus. Br J Dermatol 1993; 128: 636–443
  • Schaller J, Niedecken H W, Biwer E, et al. Characterization of lymphocytic infiltrate cells in bullous pemphigoid and pemphigus vulgaris. Dermatol Monatsschr 1990; 176: 661–8
  • Grando S A, Glukhenky B T, Drannik G. N., et al. Autoreactive cytotoxic T lymphocytes in pemphigus ans pemphigoid. Autoimmunity 1989; 3: 247–60
  • Mashkilleyson N, Konttinen Y T, Visa K. Local involvement of antigen-presenting cells and activated T cells in perile-sional and clinically uninvolved skin in pemphigus vulgaris. Acta Derm Venereal 1989; 69: 424–8
  • Hashimoto T, Ogawa M M, Konohana A, Nishikawa T. Detection of pemphigus vulgaris and pemphigus foliaceus antigens by immunoblot analysis using different antigen sources. J Invest Dermatol 1990; 94: 327–31
  • Korman N J, Eyre R W, Klaus-Kovtun V, Stanley J R. Demonstration of an adhering-junction molecule (plakoglobin) in the autoantigens of pemphigus foliaceus and pemphigus vulgaris. NEngl J Med 1989; 321: 631–5
  • Bøyum A. Isolation of human blood monocytes with Nycodenz, a new non-ionic iodinated gradient medium. Scand J Immunol 1983; 17: 429–36
  • López-Moratalla N, González A, Aymerich M S, et al. Monocyte inducible nitric oxide synthase in multiple sclerosis. Regulatory role of NO. Nitric Oxide 1997; 1: 95–104
  • Ding X, Aoki V, Mascaro J. M., Jr, et al. Mucosal and mucocutaneous (generalized) pemphigus vulgaris show distinct autoantibody profiles. J Invest Dermatol 1997; 109: 592–6
  • Mahoney M G, Wang Z, Rothenberger K, Koch P J, Amagai M, Stanley J R. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. J Clin Invest 1999; 103: 461–8
  • Chan L S, Vanderlugt C J, Hashimoto T, et al. Epitope spreading: Lesson from autoimmune skin diseases. J Invest Dermatol 1998; 110: 103–9
  • Miyagawa S, Amagai M, Lida T., Yamamoto Y, Nishikawa T, Shirai T. Late development of anti-desmoglein 1 antibodies in pemphigus vulgaris: correlation with disease progression. Br J Dermatol 1999; 141: 1084–87
  • Palucka K A, Taquet N, Sanchez-Chapuis F, Gluckman J C. Dendritic cells as the terminal stage of monocytes differentiation. J Immunol 1998; 160: 4587–95
  • Caux C, Vanbervliet B, Massacrier C, Durand Y, Banchereau J. Interleukin-3 cooperates with Tumor Necrosis Factor a for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells. Blood 1996; 87: 2376–85
  • Banchereau J, Steinman R M. Dendritic cells and the control of immunity. Nature 1998; 392: 245–52
  • Caux C, Massacrier C, Vanbervliet B, et al. CD45RA+ naive T cells. CD34+hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 1997; 90: 1458–70
  • Dubois B, Vanbervliet B, Fayette J, et al. Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes. J Exp Med 1997; 185: 941–51
  • Dubois B, Massacrier C, Vanbervliet B, et al. Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J Immunol 1998; 161: 2223–31
  • Ziegler-Heitbrock H WL, Fingerle G, Strobel M, et al. The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol 1993; 23: 2053–8
  • Ziegler-Heitbrock H WL. Heterogeneity of human blood monocytes: the CD14+/CD16+ subpopulation. Immunology Today 1996; 17: 424–8
  • Croft M, Swain S. L. Recently activated naive CD4 T cells can help resting B cells, and can produce sufficient autocrine IL-4 to drive differentiation to secretion of T helper 2-type cytokines. J Immunol 1995; 154: 4269–82
  • López-Moratalla N, Calleja A, Gonzalez A, et al. Inducible Nitric Oxide Synthase in Monocytes from Patients with Graves' Disease. Biochem Biophys Res Commun 1996; 226: 723–9
  • González A, Calleja A, Santiago E, et al. Correlation of activated monocytes or B cells with T lymphocyte subsets in patients with Graves' disease. lnt J Mol Med 1998; 1: 95–103
  • López-Moratalla N, Ruiz E, López-Zabalza M J, Santiago E. A common structural motif in immunopotentiating peptides with sequences present in human autoantigens. Elicitation of a response mediated by monocytes and Thl cells. Biochem Biophys Acta 1996; 1317: 183–91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.