46
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Rheumatoid Arthritis and Tumor Necrosis Factor α

&
Pages 291-303 | Received 30 Aug 2000, Accepted 14 Feb 2001, Published online: 07 Jul 2009

References

  • Takei M, Mitamura K, Fujiwara S, et al. Detection of Epstein‐Barr virus‐encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis. Int Immunol. 1997; 9: 739–743
  • Sutton R N P, Emond R T D, Thomas D B, et al. The occurrence of autoantibodies in infectious mononucleosis. Clin Exp Immunol. 1974; 17: 427–436
  • Schooley R T, Densen P, Harmon D, et al. Antineutrophil antibodies in infectious mononucleosis. Am J Med. 1984; 76: 85–90
  • Misra R, Verables P J, Plater‐Zyberk C, et al. Anti‐cardioli‐pin antibodies in infectious mononucleosis react with the membrane of activated lymphocytes. Clin Exp Immunol. 1989; 75: 35–40
  • Alspaugh M A, Jensen F C, Rabin H, et al. Lymphocytes transformed by Epstein‐Barr virus: Induction of nuclear antigen reactive with antibody in rheumatoid arthritis. J Exp Med. 1978; 147: 1018–1027
  • Billings P B, Hoch S O, White P J, et al. Antibodies to the Epstein‐Barr virus nuclear antigen and rheumatoid arthritis nuclear antigen identify the same polypeptide. Proc Nat Acad Sci U. S. A. 1983; 80: 7104–7108
  • Roudier J, Rhodes G, Petersen J, et al. The Epstein‐Barr virus glycoprotein gpllO, a molecular link between HLA.‐DR4, HLA.‐DR1 and rheumatoid arthritis. Scand J Immunol. 1988; 27: 367–371
  • Roudier J, Petersen J, Rhodes G, et al. Susceptibility to rheumatoid arthritis maps to a T‐cell epitope shared by the HLA.‐Dw4 DR β 1 chain and the Epstein‐Barr virus glycoprotein gpllO. Proc Nat Acad Sci U. S. A. 1989; 86: 5104–5108
  • Albani S, Keystone E C, Nelson J, et al. Positive selection in autoimmunity: abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis. Nat Med. 1995; 1: 448–452
  • Koide J, Takada K, Sugiura M, et al. Spontaneous establishment of an Epstein‐Barr virus‐infected fibroblast line from the synovial tissue of a rheumatoid arthritis patient. J virol. 1997; 71: 2478–2481
  • Hirohata S, Yanagida T, Tomita T, et al. Bone marrow CD34+ progenitor cells from rheumatoid arthritis patients give rise to spontaneous transformation of peripheral blood B cells from Epstein‐Barr virus uninfected healthy individuals. Arthritis Rheum. 1996; 39: S194
  • Fox R I, Luppi M, Pisa P, et al. Potential role of Epstein‐Barr virus in Sjogren syndrome and rheumatoid arthritis. J Rheumatol. 1992; 19(suppl‐32)18–24
  • White D G, Woolf A D, Mortimer P R, et al. Human parvovirus arthropathy. Lancet 1985; i: 419–421
  • Luzzi G A, Kurtz J B, Chapel H, et al. Human parvovirus arthropathy and rheumatoid factor. Lancet 1985; i: 1218
  • Tyndall A, Jelk W, Hirsch H H, et al. Parvovirus B‐19 and erosive polyarthritis. Lancet 1994; 343: 480–481
  • Cohen B J, Buckley M M, Clewley J P, et al. Human parvovirus infection in early rheumatoid and inflammatory arthritis. Ann Rheum Dis. 1986; 45: 832–838
  • Saal J G, Steidle M, Einsele H, et al. Persistence of B‐19 parvovirus in synovial membranes of patients with rheumatoid arthritis. Rheumatology Int. 1992; 12: 147–151
  • Kerr J R, Curran M D, Moore J E, et al. Persistent parvovirus B‐19 infection. Lancet 1995; 345: 1118
  • Soderlund M, von Essen R, Haapasaari J, et al. Persistence of parvovirus B‐19 DNA in synovial membranes of young patients with and without chronic arthropathy. Lancet 1997; 349: 1063–1065
  • Futo F, Saag K G, Scharosch L L, et al. Parvovirus B‐19 specific DNA in bone marrow from B‐19 arthropathy patients: evidence for B‐19 virus persistence. J Inf Dis. 1993; 167: 744–748
  • Osame M, Usuku K, Iaumo S, et al. HTLV‐1 associated myelopathy. A new clinical entity. Lancet 1986; 1: 1031–1032
  • Nishioka K, Maruyama I, Sato K, et al. Chronic inflammatory arthropathy associated with HTLV‐1. Lancet 1989; 1: 441
  • Sato K, Maruyama I, Maruyama Y, et al. Arthritis in patients infected with human T lymphotropic virus typel. Clinical and immunopathologic features. Arthritis Rheum. 1991; 34: 714–721
  • di Giovine F S, Bailly S, Bootman J, et al. Absence of lenti‐viral and human T cell leukemia viral sequences in patients with rheumatoid arthritis. Arthritis Rheum. 1994; 37: 349–358
  • Nelson P N, Lever A M, Bruckner F E, et al. Polymerase chain reaction fails to incriminate exogenous retroviruses HTLV‐1 and HIV‐1 in rheumato‐logical diseases although a minority of sera cross react with retroviral antigens. Ann Rheum Dis. 1994; 53: 749–754
  • Iwakura Y, Iwakura Y, Tosu M, Yoshida E, et al. Induction of inflammatory arthropathy resembling rheumatoid arthritis in mice transgenic for HTLV‐1. Science 1991; 253: 1026–1028
  • Stransky G, Vernon J, Aicher W K, et al. Virus‐like particles in synovial fluids from patients with rheumatoid arthritis. Brit J Rheumatol. 1993; 32: 1044–1048
  • Gay S, Gay R E, Koopman W J, et al. Molecular and cellular mechanism of joint destruction in rheumatoid arthritis : two cellular mechanisms explain joint destruction?. Ann Rheum Dis 1993; 52: 39–47
  • Barret J H, Brennan P, Fiddler M, et al. Does rheumatoid arthritis remit during pregnancy and relapse postpartum? Results from a nationwide study in the United Kingdom performed prospectively from late pregnancy. Arthritis Rheum 1999; 42: 1219–1227
  • Ostensen M. Sex hormones and pregnancy in rheumatoid arthritis and systemic lupus erythematosus. Ann N Y Acad Sci 1999; 876: 131–143
  • Gregersen P K, Silver J, Winchester R J. The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987; 30: 1205–1213
  • Takeuchi F, Nakano K, Matsuta K, et al. Positive and negative association of HLA.‐DR genotypes with Japanese rheumatoid arthritis. Clin Exp Rheumatol. 1996; 14: 17–22
  • Janossy G, Panayi G, Duke O, et al. Rheumatoid arthritis: a disease of T‐lymphocyte/macrophage immunoregulation. Lancet 1981; ii: 839–841
  • Klareskog L, Forsum U, Scheynius A, et al. Evidence in support of a self perpetuating HLA.‐DR dependent delayed type cell reaction in rheumatoid arthritis. Proc Nat Acad Sci U. S. A. 1982; 72: 3632–3636
  • Mu H, Charmley P, King M C, et al. Synergy between T cell receptor β gene polymorphism and HLA.‐DR4 in susceptibility to rheumatoid arthritis. Arthritis Rheum 1996; 39: 931–937
  • Pile K, Wordsworth P, Liote F, et al. Analysis of a T cell receptor V (3 segment implicated in susceptibility to rheumatoid arthritis: V β 2 germline polymorphis does not encode susceptibility. Ann Rheum Dis. 1993; 52: 891–894
  • McDermott M, Kastner D L, Holloman J D, et al. The role of T cell receptor β chain gene in susceptibility to rheumatoid arthritis. Arthritis Rheum 1995; 38: 91–95
  • Hall F C, Brown M A, Weeks D L, et al. A linkage study across the T cell receptor A and T cell receptor B loci in families with rheumatoid arthritis. Arthritis Rheum 1997; 40: 1798–1802
  • Hajeer A H, Hajeer A H, Worthington J, Silman A J, et al. Association of tumor necrosis factor microsatellite polymorphisms with HLA.‐Dr β 1–0401 bearing haplotypes in rheumatoid arthritis patients. Arthritis Rheum. 1996; 39: 1109–1114
  • Quadri S A, Taneja V, Mehra N K, et al. HSP‐70–1 promoter region alleles and susceptibility to rheumatoid arthritis. Clin Exp Rheumatol 1996; 14: 183–185
  • Hemler M E, Glass D, Coblyn J S, et al. Very late activation antigens on rheumatoid synovial fluid T lymphocytes: association with stages of T cell activation. J Clin Invest. 1986; 78: 696–702
  • Cush J J, Lipsky P E. Phenotypic analysis of synovial tissue and peripheral blood lymphocytes isolated from patients with rheumatoid arthritis. Arthritis Rheum. 1988; 31: 1230–1238
  • Johnson B A, Haines G K, Harlow L A, et al. Adhesion molecule expression in human synovial tissue. Arthritis Rheum. 1993; 36: 137–146
  • Morales‐Ducret J, Wayner E, Elices M J, et al. Alpha 4/beta 1 integrin (VLA‐4) ligands in arthritis: Vascular cell adhesion molecule‐1 expression in synovium and on fibrob‐last‐like synoviocytes. J Immunol. 1992; 149: 1424–1431
  • Allard S A, Muirden K D, Camplejohn K L, et al. Chondro‐cyte‐derived cells and matrix at the rheumatoid carti‐lage‐pannus junction identified with monoclonal antibodies. Rheumatol. Int. 1987; 7: 153–159
  • Vincenti M P, Clark I M, Brinckerhoff C E. Using inhibitors of metalloproteinases to treat arthritis. Arthritis Rheum. 1994; 37: 1115–1126
  • Buttle D J. Lysosomal cysteine endopeptidases in the degradation of carriage and bone. Immunopharmacology of Joints and Connective Tissue, E Davies, J T Dingle. Academic Press, London 1994; 119–128
  • Kawakami A, Eguchi K, Matsuoka N, et al. Fas and FasL interaction is necessary for human osteoblast apoptosis. J Bone Miner Res 1997; 12: 1637–1646
  • McLnnes I B, Liew F Y. Interleukin 15, a proinflammatory role in rheumatoid arthritis synovitis. Immunology Today 1998; 19: 75–79
  • Feldman M, Brennan F M, Maini R N. Role of cytokines in rheumatoid arthritis. Ann Rev Immunol. 1996; 14: 397–440
  • Katsikis P, Chu C Q, Brennnan F M, et al. Immuno‐regula‐tory role of interleukin 10 (IL‐10) in R. A. J Exp Med. 1994; 179: 1517–1527
  • Cush J J, Splawski J B, Thomas R. Elevated IL‐10 levels in patients with R. A. Arthritis Rheum. 1995; 38: 96–104
  • Chomarat P, Vannier E, Dechanet J, et al. Balance of IL‐1 receptor antagonist / IL‐1 p in rheumatoid synovium and its regulation by IL‐4 and IL‐10. J Immunol. 1995; 154: 1432–1439
  • Rousset F, Garcia B, Deference T, et al. IL‐10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U. S. A. 1992; 89: 1890–1893
  • Thurkow E W, van der Heijden I M, Breedveld F C, et al. Increased expression of IL‐15 in the synovium of patients with rheumatoid arthritis compare with Yersinia‐induced arthritis and osteoarthritis. J Pathol. 1997; 181: 444–450
  • McLnnes I B, Leung B P, Sturrock R D, et al. Interleukin 15 mediates T cell‐dependent regulation of TNF a production in rheumatoid arthritis. Nat Med. 1997; 3: 189–195
  • Sebbag M, Parry S L, Brennan F M, et al. Cytokine stimulation of T lymphocytes regulates their capacity to induce monocyte production of tumor necrosis factor‐alpha, but not interleukin 10 possible relevance to pathophysiology of rheumatoid arthritis. Eur J Immunol. 1997; 27: 624–632
  • Yao Z, Painter S L, Fanslow W C, et al. Human IL‐17: a novel cytokine derived from T cells. J Immunol. 1995; 155: 5483–5486
  • Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin 17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996; 183: 2593–2603
  • Moreau I, Duvert V, Caux C, et al. Myofibroblastic stromal cells isolated from human bone marrow induce the proliferation of both early myeloid and B‐lymphoid cells. Blood 1993; 82: 2396–2405
  • Kotake S, Udagawa S, Takahashi N, et al. IL‐17 in synovial fluids from patients with RA is a potent stimulator of osteo‐clastogenesis. J Clin Inv. 1999; 103: 1345–1352
  • Olee T, Hashimoto S, Quach J, et al. 11–18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol. 1999; 162: 1096–1110
  • Hoshino K, Tsutui H, Kawai T, et al. Cutting Edge: Generation of IL‐18 receptor‐deficient mice: Evidence for IL‐1 receptor‐mediated protein as an essential 11–18 binding receptor. J Immunol. 1999; 162: 5041–5044
  • Hyodo Y, Matsui K, Hayashi N, et al. IL‐18 upregulates perforin‐mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL‐18 receptor. J Immunol. 1999; 162: 1662–1668
  • Olee T, Hashimoto S, Quach J, et al. IL‐18 is produced by articular chondrocyte and induces proinflammatory and catabolic responses. J Immunol 1999; 162: 1096–1100
  • Dinarello C A, Cannon J G, Wolff S M, et al. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces prduction of IL‐1. J Exp Med. 1986; 163: 1433–1450
  • Brennan F M, Chantry D, Jackson H, et al. Inhibitory effect of TNF α antibodies on synovial cell interleukin 1 production in rheumatoid arhtritis. Lancet 1989; 2: 244–47
  • Haworth L, Brennnan F M, Chantry D, et al. Expression of granulocyte‐macrophage colong‐stimulating factor in RA: regulation by tumor necrosis factor‐α. Eur J Immunol. 1991; 21: 2575–2579
  • Fong Y, Tracy K J, Moldawer L L, et al. Antibodies to cachectin/ tumor necrosis factor reduce IL‐1 β and IL‐6 appearance durning letheal bacteremia. J Exp Med. 1989; 170: 1627–1633
  • Butler D, Maini R N, Feldman M, et al. Blockade of TNF a with chimeric anti‐TNF amonoclonal antibody, cA2 reduces IL‐6 and IL‐8 release in RA mononuclear cell cultures: A comparison with IL‐1 ra. Eur Cytokine Network 1995; 6: 225–230
  • Dinarello C A. The interleukin‐1 family: 10 year of discovery. FASEB J. 1994; 8: 1314–1325
  • Cooper W O, Fava R A, Gates C A, et al. Acceleration of onset of collagen‐induced arthritis by intra‐articular injection of tumor necrosis factor or transforming growth factor β. Clin Exp Immunol. 1992; 89: 244–250
  • Brahn E, Peacok D J, Banquerigo M E, et al. Effects of tumor necrosis factor α (TNF α ) on collagen arthritis. Lymphokine Cytokine Res. 1992; 11: 253–256
  • Thorbecke G J, Shah R, Leu C H, et al. Involvement of endogenous tumor necrosis factor a and transforming growth factor β durning induction of collagen type II arthritis in mice. Proc Nat Acad Sci U. S. A. 1992; 89: 7375–7379
  • Piguet P F, Grau G E, Vesin C, et al. Evolution of collagen arthritis in mice is arrested by treatment with anti‐tumor necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunology 1992; 77: 510–514
  • Williams R O, Feldman M, Maini R N. Anti‐tumor necrosis factor ameliorates joint disease in murine collagen‐induced arthritis. Proc Natl Acad Sci. U. S. A. 1992; 89: 9784–9788
  • Douni E, Akassoglow K, Alexopoulou L, et al. Transgenic and knockout analysis of the role of TNF in immune regulation and disease pathogenesis. Ann Inflammation 1996; 47: 27–38
  • Kontoyiannis D, Pasparakis M, Pizarro T T, et al. Impaird on/off regulation of TNF biosynthesis in mice lacking TNF AU‐rich elements: Implications for joint and gut‐associated immunopathologies. Immunity 1999; 10: 387–398
  • Keffer J, Probert L, Cazlaris H, et al. Transgenic mice expressing human tumor necrosis factor: a predictive genetic model of arthritis. EMNBO J. 1998; 10: 4025–4031
  • Engleman H, Aderka D, Rubinstein M, et al. A tumor necrosis factor‐binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J Biol Chem. 1989; 264: 11974–11980
  • Olsson I, Lantz M, Nelson E, et al. Isolation and characterization of a tumor necrosis factor binding protein from urine. Eur J Hematol. 1989; 42: 270–275
  • Roux‐Lombard P, Punzi L, Hasler F, et al. Soluble tumor necrosis factor in human inflammatory synovial fluids. Arthritis Rheum. 1993; 36: 485–489
  • Cope A P, Aderka D, Doherty M, et al. Soluble tumor necrosis factor (TNF) receptors are upregulated in the sera and synovial fluids of patients with rheumatic diseases. Arthritis Rheum. 1992; 35: 1160–1168
  • Elliot M J, Maini R N, Feldman M, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor α. Arthritis Rheum 1993; 36: 1681–1690
  • Rankin E C, Choy E H, Kassimo D, et al. The therapeutic effects of an engineered human anti‐tumor necrosis factor antibody (CDP571) in rheumatoid arthritis. Brit J Rheumatol. 1995; 3: 334–342
  • Maini R N, Elliott M J, Long‐Fox A, et al. Clinical response of rheumatoid arthritis to anti‐TNF(cA2) monocloal antibody is related to administred dose and persistence of circulating antibody. Arthritis Rheum. 1995; 38: S186
  • Eliott M J, Maini R N, Feldman M, et al. Repeated therapy with monoclonal antibody to tumor necrosis factor α (cA2) in patients with rheumatoid arthritis. Lancet 1994; 344: 1125–1127
  • Maini R N, Breedveld F C, Kalden J R, et al. Therapeutic efficacy of multiple intravenous infusions of antitumor necrosis factor α monoclonal antibody: Combined with low‐dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998; 41: 1552–1563
  • Maini R N, St. Clair E W, Breedveld F C, et al. Infliximab (chimeric antitumor necrosis factor amonoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet 1999; 354: 1932–1939
  • Abe T, Takeuchi T. The other side of TNF‐targeted therapy of RA patients. Curr Rheumatol Reports 2001, In press
  • Furst D E. The rational use of methotrexate in rheumatoid arthritis and other rheumatic disease. Brit J Rheumatol. 1997; 36: 1196–1204
  • Kremen J M. Methotrexate update. Scand. J Rheumatol 1996; 25: 341–344
  • Goldman I D, Matherly L H. The cellular pharmacology of methotrexate. Pharmacol Ther. 1985; 28: 77–102
  • Anthony A C. The biological chemistry of folate receptors. Blood 1992; 79: 2807–2820
  • Cronstein B N, Merrill J T. Mechanisms of the effects of methotrexate. Bull Rheum Dis. 1996; 45: 6–8
  • Rosowsky A, Wright J E, Cucchi C A, et al. Phenotypic heterogeneity in cultured human head and neck squamous cell carcinoma lines with low‐level methotrexate resistance. Cancer Research 1985; 45: 6205–6212
  • Takemura Y, Kobayashi H, Miyachi H. Cellular and molecular mechanisms of resistance to antifolate drugs: new analogues and approaches to overcome the resistance. Int J Hematology 1997; 66: 459–477
  • Sadasivan E, Rothenberg S P. The complete amino acid sequence of a human folate binding protein from KB cells determined from the cP. N. A. J Biol Chem. 1989; 264: 5806–5811
  • Shen F, Ross J F, Wang X, et al. Identification of a novel folate receptor, a trancated receptor, and receptor type B in hematopoietic cells: cDNA cloning, expression, immunore‐activity, and tissue specificity. Biochemistry 1994; 33: 1209–1214
  • Nakashima‐Matsusita N, Homma T, Yu S, et al. Selective expression of folate receptor p and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum. 1999; 42: 1609–1616
  • Chung K N, Saikawa Y, Paik T H, et al. Stable transfectants on human MCF‐7 breast cancer cells with increased levels of the human folate receptor exhibit an increased sensitivity to antifolate. J clin Inv. 1993; 91: 1289–1294
  • Ross J F, Wang H, Behan F C, et al. Folate receptor type beta is neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer 1999; 85: 348–357
  • Shen F, Wang H, Zheng X, et al. Expression levels of functional folate receptor a and Pare related to the number of N‐glycosylated sites
  • Harding M J, Cantwell B M, Milstead R A, et al. Phase II study of the thymidylate synthetase inhibitor CB 3717 in colorectal cancer. Brit J Cancer 1988; 57: 628–629
  • Laohavinij S, Wedge S R, Lind M J, et al. A phase I clinical study of the antipurine antifolate lometrexol (DDATHF) given with oral folic acid. Invest New Drugs 1996; 14: 325–335

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.