373
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Recent approaches to the development of antigen-specific immunotherapies for myasthenia gravis

, , , , &
Pages 436-445 | Received 26 Nov 2009, Accepted 30 Nov 2009, Published online: 26 Feb 2010

References

  • Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol. 2002; 2:797–804.
  • Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001; 7 3: 365–368.
  • Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology. 1976; 26:1054–1059.
  • Lang B, Newsom-Davis J, Prior C, Wray D. Antibodies to motor nerve terminals: An electrophysiological study of a human myasthenic syndrome transferred to mouse. J Physiol. 1983; 344:335–345.
  • Mossman S, Vincent A, Newsom-Davis J. Passive transfer of myasthenia gravis by immunoglobulins: Lack of correlation between AChR with antibody bound, acetylcholine receptor loss and transmission defect. J Neurol Sci. 1988; 84:15–28.
  • Engel AG, Sahashi K, Fumagalli G. The immunopathology of acquired myasthenia gravis. Ann N Y Acad Sci. 1981; 377:158–174.
  • Pinching AJ, Peters DK, Newsom-Davis J. Remission of myasthenia gravis following plasma-exchange. Lancet. 1976; 2:1373–1376.
  • Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973; 180:871–872.
  • Jha S, Xu K, Maruta T, Oshima M, Mosier DR, Atassi MZ, Hoch W. Myasthenia gravis induced in mice by immunization with the recombinant extracellular domain of rat muscle-specific kinase (MuSK). J Neuroimmunol. 2006; 175 1–2: 107–117.
  • Tzartos S, Hochschwender S, Vasquez P, Lindstrom J. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol. 1987; 15:185–194.
  • Tzartos SJ, Bitzopoulou K, Gavra I, Kordas G, Jacobson L, Kostelidou K, Lagoumintzis G, Lazos O, Poulas K, Sideris S, Sotiriadis A, Trakas N, Zisimopoulou P. Antigen-specific apheresis of pathogenic autoantibodies from myasthenia gravis sera. Ann N Y Acad Sci. 2008; 1132:291–299.
  • Kaminski HJ. Treatment of myasthenia gravisIn: Current Clinical Neurology: Myasthenia gravis and Related Disorders. New York: Humana Press; 2003. 197–221.
  • Fostieri E, Kostelidou K, Poulas K, Tzartos SJ. Recent advances in the understanding and therapy of myasthenia gravis. Future Neurol. 2006; 1:799–801.
  • Chiu HC, Chen WH, Yeh JH. The six year experience of plasmapheresis in patients with myasthenia gravis. Ther Apher. 2000; 4:291–295.
  • Yeh JH, Chiu HC. Comparison between double-filtration plasmapheresis and immunoadsorption plasmapheresis in the treatment of patients with myasthenia gravis. J Neurol. 2000; 247 7: 510–513.
  • Gajdos P, Outin HD, Morel E, Raphael JC, Goulon M. High-dose intravenous gamma globulin for myasthenia gravis: Analternative to plasmaexchange. Ann N Y Acad Sci. 1987; 505:842–844.
  • Ferrero B, Durelli L, Cavallo R, Dutto A, Aimo G, Pecchio F, Bergamasco B. Therapies for exacerbation of myasthenia gravis. The mechanism of action of intravenous high-dose immunoglobulin G. Ann N Y Acad Sci. 1993; 681:563–566.
  • Dalakas MC. Intravenous immunoglobulin in autoimmune neuromuscular diseases. JAMA. 2004; 291:2367–2375.
  • Brannagan THIII, Nagle KJ, Lange DJ, Rowland LP. Complications of intravenous immune globulin treatment in neurologic disease. Neurology. 1996; 47 3: 674–677.
  • Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immuneglobulin. N Engl J Med. 2001; 345:747–755.
  • Dalakas MC. Immunotherapies in the treatment of neuromuscular disorders. Neuromuscular disorders in clinical practice. Boston: Butterworth Heinemann; 2002. 364–383.
  • Verschuuren JJ, Graus YM, Tzartos JS, van Breda Vriesman PJ, De Baets MH. Paratope- and framework-related cross-reactive idiotopes on anti-acetylcholine receptor antibodies. J Immunol. 1991; 146 3: 941–948.
  • Souroujon MC, Pachner AR, Fuchs S. The treatment of passively transferred experimental myasthenia with anti-idiotypic antibodies. Neurology. 1986; 36 5: 622–625.
  • Wang ZY, Qiao J, Link H. Suppression of experimental autoimmune myasthenia gravis by oral administration of acetylcholine receptor. J Neuroimmunol. 1993; 44 2: 209–214.
  • Im SH, Barchan D, Maiti PK, Raveh L, Souroujon MC, Fuchs S. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18. FASEB J. 2001; 15 12: 2140–2148.
  • Wu JM, Wu B, Miagkov A, Adams RN, Drachman DB. Specific immunotherapy of experimental myasthenia gravis in vitro: The “guided missile” strategy. Cell Immunol. 2001; 208 2: 137–147.
  • Psaridi-Linardaki L, Trakas N, Mamalaki A, Tzartos SJ. Specific immunoadsorption of the autoantibodies from myasthenic patients using the extracellular domain of the human muscle acetylcholine receptor alpha-subunit. Development of an antigen-specific therapeutic strategy. J Neuroimmunol. 2005; 159:183–191.
  • Kostelidou K, Trakas N, Tzartos SJ. Extracellular domains of the beta, gamma and epsilon subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: A combination of immunoadsorbents results in increased efficiency. J Neuroimmunol. 2007; 190 1–2: 44–52.
  • Zisimopoulou P, Lagoumintzis G, Poulas K, Tzartos S. Antigen-specific apheresis of human anti-acetylcholine receptor autoantibodies from myasthenia gravis patients' sera using Escherichia coli-expressed receptor domains. J Neuroimmunol. 2008; 200 1–2: 133–141.
  • Fostieri E, Tzartos SJ, Berrih-Aknin S, Beeson D, Mamalaki A. Isolation of potent human Fab fragments against a novel highly immunogenic region on human muscle acetylcholine receptor which protect the receptor from myasthenic autoantibodies. Eur J Immunol. 2005; 35 2: 632–643.
  • Mamalaki A, Trakas N, Tzartos SJ. Bacterial expression of a single-chain Fv fragment which efficiently protects the acetylcholine receptor against antigenic modulation caused by myasthenic antibodies. Eur J Immunol. 1993; 23 8: 1839–1845.
  • Papanastasiou D, Mamalaki A, Eliopoulos E, Poulas K, Liolitsas C, Tzartos SJ. Construction and characterization of a humanized single chain Fv antibody fragment against the main immunogenic region of the acetylcholine receptor. J Neuroimmunol. 1999; 94 1–2: 182–195.
  • Tsantili P, Tzartos SJ, Mamalaki A. High affinity single-chain Fv antibody fragments protecting the human nicotinic acetylcholine receptor. J Neuroimmunol. 1999; 94 1–2: 15–27.
  • Sophianos D, Tzartos SJ. Fab fragments of monoclonal antibodies protect the human acetylcholine receptor against antigenic modulation caused by myasthenic sera. J Autoimmun. 1989; 2 6: 777–789.
  • Papanastasiou D, Poulas K, Kokla A, Tzartos SJ. Prevention of passively transferred experimental autoimmune myasthenia gravis by Fab fragments of monoclonal antibodies directed against the main immunogenic region of the acetylcholine receptor. J Neuroimmunol. 2000; 104 2: 124–132.
  • Protopapadakis E, Kokla A, Tzartos SJ, Mamalaki A. Isolation and characterization of human anti-acetylcholine receptor monoclonal antibodies from transgenic mice expressing human immunoglobulin loci. Eur J Immunol. 2005; 35 6: 1960–1968.
  • Meng F, Stassen MH, Schillberg S, Fischer R, De Baets MH. Construction and characterization of a single-chain antibody fragment derived from thymus of a patient with myasthenia gravis. Autoimmunity. 2002; 35:125–133.
  • Graus YF, de Baets MH, van Breda Vriesman PJ, Burton DR. Anti-acetylcholine receptor Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. Immunol Lett. 1997; 57 1–3: 59–62.
  • van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martínez-Martínez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van de Winkel JG, Aalberse RC, Parren PW. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007; 317 5844: 1554–1557.
  • Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci. 2002; 3:102–114.
  • Psaridi-Linardaki L, Mamalaki A, Remoundos M, Tzartos SJ. Expression of soluble ligand and antibody-binding extracellular domain of human muscle acetylcholine receptor alpha subunit in yeast Pichia pastoris. Role of glycosylation in alpha-bungarotoxin binding. J Biol Chem. 2002; 277:26980–26986.
  • Kostelidou K, Trakas N, Zouridakis M, Bitzopoulou K, Sotiriadis A, Gavra I, Tzartos SJ. Expression and characterization of soluble forms of the extracellular domains of the beta, gamma and epsilon subunits of the human muscle acetylcholine receptor. FEBS J. 2006; 273:3557–3568.
  • Bitzopoulou K, Kostelidou K, Poulas K, Tzartos SJ. Mutant forms of the extracellular domain of the human acetylcholine receptor-subunit with improved solubility and enhanced antigenicity. The importance of the Cys-loop. Biochim Biophys Acta. 2008; 1784 9: 1226–1233.
  • Zouridakis M, Kostelidou K, Sotiriadis A, Stergiou C, Eliopoulos E, Poulas K, Tzartos SJ. Circular dichroism studies of extracellular domains of human nicotinic acetylcholine receptors provide an insight into their structure. Int J Biol Macromol. 2007; 41:423–429.
  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK. Crystal structure of an ACh-binding protein reveals the ligand binding domain of nicotinic receptors. Nature. 2001; 411:269–276.
  • Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005; 346:967–989.
  • Yamazaki Z, Fujimori Y, Takahama T, Inoue N, Wada T, Kazama M, Morioka M, Abe T, Yamawaki N, Inagaki K. Efficiency and biocompatibility of a new immunosorbent. Trans Am Soc Artif Intern Organs. 1982; 28:318–323.
  • Matic G, Winkler RE, Tiess M, Ramlow W. Selective apheresis- time for a change. Int J Artif Organs. 2001; 24:4–7.
  • Ptak J. Changes of plasma proteins after immunoadsorption using Ig-Adsopak columns in patients with myasthenia gravis. Transfus Apher Sci. 2004; 30 2: 125–129.
  • Takamori M, Maruta T. Immunoadsorption in myasthenia gravis based on specific ligands mimicking the immunogenic sites of the acetylcholine receptor. Therap Apher. 2001; 5:340–350.
  • Guo CY, Li ZY, Xu MQ, Yuan JM. Preparation of an immunoadsorbent coupled with a recombinant antigen to remove anti-acetylcholine receptor antibodies in abnormal serum. J Immunol Meth. 2005; 303:142–147.
  • Lindstrom J, Campbell M, Nave B. Specificities of antibodies to acetylcholine receptors. Muscle Nerve. 1978; 1:140–145.
  • Loutrari H, Tzartos SJ, Claudio T. Use of Torpedo-mouse hybrid acetylcholine receptors reveals immunodominance of the alpha subunit in myasthenia gravis antisera. Eur J Immunol. 1992; 22:2949–2956.
  • Psaridi-Linardaki L, Mamalaki A, Tzartos SJ. Future therapeutic strategies in autoimmune myasthenia gravis. Ann N Y Acad Sci. 2003; 998:539–548.
  • Burnouf T, Eber M, Kientz D, Cazenave JP, Burkhardt T. Assessment of complement activation during membrane-based plasmapheresis procedures. J Clin Apher. 2004; 19 3: 142–147.
  • Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J. 2007; 274 15: 3799–3845.
  • Loutrari H, Kokla A, Tzartos SJ. Passive transfer of experimental myasthenia gravis via antigenic modulation of acetylcholine receptor. Eur J Immunol. 1992; 22 9: 2449–2452.
  • Vincent A. Aetiological factors in development of myasthenia gravis. Adv Neuroimmunol. 1994; 4 4: 355–371.
  • Tzartos SJ, Sophianos D, Efthimiadis A. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera. J Immunol. 1985; 134 4: 2343–2349.
  • Tzartos SJ, Barkas T, Cung MT, Mamalaki A, Marraud M, Orlewski P, Papanastasiou D, Sakarellos C, Sakarellos-Daitsiotis M, Tsantili P, Tsikaris V. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev. 1998; 163:89–120.
  • Tzartos SJ, Lindstrom JM. Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA. 1980; 77 2: 755–759.
  • Tzartos SJ, Seybold ME, Lindstrom JM. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc Natl Acad Sci. 1982; 79 1: 188–192.
  • Heidenreich F, Vincent A, Willcox N, Newsom-Davis J. Anti-acetylcholine receptor antibody specificities in serum and in thymic cell culture supernatants from myasthenia gravis patients. Neurology. 1988; 38 11: 1784–1788.
  • Lennon VA, Griesmann GE. Evidence against acetylcholine receptor having a main immunogenic region as target for autoantibodies in myasthenia gravis. Neurology. 1989; 39 8: 1069–1076.
  • Trakas N, Tzartos SJ. Conjugation of acetylcholine receptor-protecting Fab fragments with polyethylene glycol results in a prolonged half-life in the circulation and reduced immunogenicity. J Neuroimmunol. 2001; 120 1–2: 42–49.
  • Farrar J, Portolano S, Willcox N, Vincent A, Jacobson L, Newsom-Davis J, Rapoport B, McLachlan SM. Diverse Fab specific for acetylcholine receptor epitopes from a myasthenia gravis thymus combinatorial library. Int Immunol. 1997; 9 9: 1311–1318.
  • Schuurman J, Van Ree R, Perdok GJ, Van Doorn HR, Tan KY, Aalberse RC. Normal human immunoglobulin G4 is bispecific: It has two different antigen-combining sites. Immunology. 1999; 97 4: 693–698.
  • Aalberse RC, Schuurman J. IgG4 breaking the rules. Immunology. 2002; 105 1: 9–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.