442
Views
56
CrossRef citations to date
0
Altmetric
Research Article

Thymic remodeling associated with hyperplasia in myasthenia gravis

Pages 401-412 | Received 16 Dec 2009, Accepted 16 Dec 2009, Published online: 19 Apr 2010

References

  • Vrolix K, Fraussen J, Molenaar P, Losen M, Somers V, Stinissen P, De Baets M, Martínez-Martínez P. The auto-antigen repertoire in myasthenia gravis. Autoimmunity. 2010; 43 5: 380–400.
  • Aharonov A, Abramsky O, Tarrab-Hazdai R, Fuchs S. Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet. 1975; 2 7930: 340–342.
  • Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nature Med. 2001; 7 3: 365–368.
  • Evoli A, Batocchi AP, Lo Monaco M, Servidei S, Padua L, Majolini L, Tonali P. Clinical heterogeneity of seronegative myasthenia gravis. Neuromuscul Disord. 1996; 6 3: 155–161.
  • Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, Beeson D, Willcox N, Vincent A. IgG1 antibodies to acetylcholine receptors in “seronegative” myasthenia gravis. Brain. 2008; 131 Pt 7: 1940–1952.
  • Berrih-Aknin S, Eymard B. Thymus et pathologies. Biologie. 1999; 5 7: 579–585.
  • Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med. 2005; 202 1: 33–45.
  • Cabarrocas J, Cassan C, Magnusson F, Piaggio E, Mars L, Derbinski J, Kyewski B, Gross DA, Salomon BL, Khazaie K, Saoudi A, Liblau RS. Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proc Natl Acad Sci USA. 2006; 103 22: 8453–8458.
  • Levinson AI, Wheatley LM. The thymus and the pathogenesis of myasthenia gravis. Clin Immunol Immunopathol. 1996; 78 1: 1–5.
  • Berrih-Aknin S, Morel E, Raimond F, Safar D, Gaud C, Binet J, Levasseur P, Bach J. The role of the thymus in myasthenia gravis: Immunohistological and immunological studies in 115 cases. Ann N Y Acad Sci. 1987; 505:50–70.
  • Kuks JB, Oosterhuis HJ, Limburg PC, The TH. Anti-acetylcholine receptor antibodies decrease after thymectomy in patients with myasthenia gravis. Clinical correlations. J Autoimmun. 1991; 4 2: 197–211.
  • Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S, Berrih-Aknin S. Expression of acetylcholine receptor genes in human thymic epithelial cells: Implications for myasthenia gravis. J Immunol. 1996; 157 8: 3752–3760.
  • Safar D, Berrih-Aknin S, Morel E. In vitro anti-acetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: Correlations with thymic histology and thymic epithelial-cell interactions. J Clin Immunol. 1987; 7 3: 225–234.
  • Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D, Galanaud P, Richard Y. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol. 1990; 145 7: 2115–2122.
  • Melms A, Schalke BC, Kirchner T, Muller-Hermelink HK, Albert E, Wekerle H. Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest. 1988; 81 3: 902–908.
  • Meinl E, Klinkert WE, Wekerle H. The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol. 1991; 139 5: 995–1008.
  • Papatestas AE, Alpert LI, Osserman KE, Osserman RS, Kark AE. Studies in myasthenia gravis: Effects of thymectomy. Results on 185 patients with nonthymomatous and thymomatous myasthenia gravis, 1941–1969. Am J Med. 1971; 50 4: 465–474.
  • Ponseti JM, Caritg N, Gamez J, Lopez-Cano M, Vilallonga R, Armengol M. A comparison of long-term post-thymectomy outcome of anti-AChR-positive, anti-AChR-negative and anti-MuSK-positive patients with non-thymomatous myasthenia gravis. Expert Opin Biol Ther. 2009; 9 1: 1–8.
  • Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F, Batocchi AP, Marino M, Bartoccioni E. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain. 2003; 126 Pt 10: 2304–2311.
  • Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, Niks EH, Berrih-Aknin S, Scaravilli F, Canelhas A, Marx A, Newsom-Davis J, Willcox N, Vincent A. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005; 57 3: 444–448.
  • Lauriola L, Ranelletti F, Maggiano N, Guerriero M, Punzi C, Marsili F, Bartoccioni E, Evoli A. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology. 2005; 64 3: 536–538.
  • Meraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F, Talaksen C, Berrih-Aknin S. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood. 2006; 108 2: 432–440.
  • Le Panse R, Cizeron-Clairac G, Cuvelier M, Truffault F, Bismuth J, Nancy P, De Rosbo NK, Berrih-Aknin S. Regulatory and pathogenic mechanisms in human autoimmune myasthenia gravis. Ann N Y Acad Sci. 2008; 1132:135–142.
  • Bofill M, Janossy G, Willcox N, Chilosi M, Trejdosiewicz LK, Newsom-Davis J. Microenvironments in the normal thymus and the thymus in myasthenia gravis. Am J Pathol. 1985; 119 3: 462–473.
  • Berrih S, Savino W, Cohen S. Extracellular matrix of the human thymus: Immunofluorescence studies on frozen sections and cultured epithelial cells. J Histochem Cytochem. 1985; 33 7: 655–664.
  • Berrih S, Morel E, Gaud C, Raimond F, Le Brigand H, Bach JF. Anti-AChR antibodies, thymic histology, and T-cell subsets in myasthenia gravis. Neurology. 1984; 34 1: 66–71.
  • Flores KG, Li J, Hale LP. B cells in epithelial and perivascular compartments of human adult thymus. Hum Pathol. 2001; 32 9: 926–934.
  • Bradfield JW. Altered venules in the stimulated human thymus as evidence of lymphocyte recirculation. Clin Exp Immunol. 1973; 13 2: 243–252.
  • Vetters M, Barclay RS. The incidence of germinal centres in thymus glands of patients with congenital heart disease. J Clin Pathol. 1973; 26 8: 583–591.
  • Murakami M, Hosoi Y, Negishi T, Kamiya Y, Miyashita K, Yamada M, Iriuchijima T, Yokoo H, Yoshida I, Tsushima Y, Mori M. Thymic hyperplasia in patients with Graves’ disease. Identification of thyrotropin receptors in human thymus. J Clin Invest. 1996; 98 10: 2228–2234.
  • Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CCL21 in thymic hyperplasia. J Immunol. 2006; 177:7868–7879.
  • Le Panse R, Cizeron-Clairac G, Cuvelier M, Truffault F, Bismuth J, Nancy P, Kerlero de Rosbo N, Berrih-Aknin S. Regulatory and pathogenic mechanisms in autoimmune myasthenia gravis. Ann N Y Acad Sci. 2008; 1132:142.
  • McLachlan SM, Nicholson LV, Venables G, Mastalgia FL, Bates D, Smith BR, Hall R. Acetylcholine receptor antibody synthesis in lymphocyte cultures. J Clin Lab Immunol. 1981; 5 3: 137–142.
  • Cizeron-Clairac G, LePanse R, Frenkian-Cuvelier M, Meraouna A, Truffault F, Bismuth J, Mussot S, Kerlero de Rosbo N, Berrih-Aknin S. Thymus and myasthenia gravis: What can we learn from DNA microarrays?. J Neuroimmunol. 2008; 201–202:57–63.
  • Sims GP, Shiono H, Willcox N, Stott DI. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol. 2001; 167 4: 1935–1944.
  • Guigou V, Emilie D, Berrih-Aknin S, Fumoux F, Fougereau M, Schiff C. Individual germinal centres of myasthenia gravis human thymuses contain polyclonal activated B cells that express all the Vh and Vk families. Clin Exp Immunol. 1991; 83 2: 262–266.
  • Soderstrom N, Axelsson JA, Hagelqvist E. Postcapillary venules of the lymph node type in the thymus in myasthenia. Lab Invest. 1970; 23 5: 451–458.
  • Girard JP, Springer TA. High endothelial venules (HEVs): Specialized endothelium for lymphocyte migration. Immunol Today. 1995; 16 9: 449–457.
  • Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I, Dartevelle P, KerlerodeRosbo N, LePanse R. CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol. 2009; 66 4: 521–531.
  • Haig DM, Hopkins J, Miller HR. Local immune responses in afferent and efferent lymph. Immunology. 1999; 96 2: 155–163.
  • Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ. B-cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity. 2006; 24 2: 203–215.
  • Nibbs RJ, Kriehuber E, Ponath PD, Parent D, Qin S, Campbell JD, Henderson A, Kerjaschki D, Maurer D, Graham GJ, Rot A. The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol. 2001; 158 3: 867–877.
  • Pearse G. Normal structure, function and histology of the thymus. Toxicol Pathol. 2006; 34 5: 504–514.
  • Nagane Y, Utsugisawa K, Obara D, Yamagata M, Tohgi H. Dendritic cells in hyperplastic thymuses from patients with myasthenia gravis. Muscle Nerve. 2003; 27 5: 582–589.
  • Cohen-Kaminsky S, Berrih-Aknin S. Production of interleukin 1 (IL1) by human thymic epithelial cells (TEC). Adv Exp Med Biol. 1988; 237:299–305.
  • Emilie D, Crevon MC, Cohen-Kaminsky S, Peuchmaur M, Devergne O, Berrih-Aknin S, Galanaud P. In situ production of interleukins in hyperplastic thymus from myasthenia gravis patients. Hum Pathol. 1991; 22 5: 461–468.
  • Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D, Galanaud P, Berrih-Aknin S. Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Netw. 1993; 4 2: 121–132.
  • Colombara M, Antonini V, Riviera AP, Mainiero F, Strippoli R, Merola M, Fracasso G, Poffe O, Brutti N, Tridente G, Colombatti M, Ramarli D. Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: Effects on survival and migration of peripheral T and B cells. J Immunol. 2005; 175 10: 7021–7028.
  • Bernasconi P, Passerini L, Annoni A, Ubiali F, Marcozzi C, Confalonieri P, Cornelio F, Mantegazza R. Expression of transforming growth factor-beta1 in thymus of myasthenia gravis patients: Correlation with pathological abnormalities. Ann N Y Acad Sci. 2003; 998:278–283.
  • Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005; 105 2: 735–741.
  • Salmon AM, Bruand C, Cardona A, Changeux JP, Berrih-Aknin S. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis. J Clin Invest. 1998; 101 11: 2340–2350.
  • Pugliese A, Zeller M, Fernandez AJr, Zalcberg LJ, Bartlett RJ, Ricordi C, Pietropaolo M, Eisenbarth GS, Bennett ST, Patel DD. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997; 15 3: 293–297.
  • Mesnard-Rouiller L, Bismuth J, Wakkach A, Poea-Guyon S, Berrih-Aknin S. Thymic myoid cells express high levels of muscle genes. J Neuroimmunol. 2004; 148 1–2: 97–105.
  • Zheng Y, Wheatley LM, Liu T, Levinson AI. Acetylcholine receptor alpha subunit mRNA expression in human thymus: Augmented expression in myasthenia gravis and ∖upregulation by interferon-gamma. Clin Immunol. 1999; 91 2: 170–177.
  • Drenckhahn D, von Gaudecker B, Muller-Hermelink H, Unsicker K, Groschel-Stewart U. Myosin and actin containing cells in the human postnatal thymus. Ultrastructural and immunohistochemical findings in normal thymus and in myasthenia gravis. Virchows Arch B Cell Pathol Mol Pathol. 1979; 23 1: 33–45.
  • Wakkach A, Poea S, Chastre E, Gespach C, Lecerf F, De La Porte S, Tzartos S, Coulombe A, Berrih-Aknin S. Establishment of a human thymic myoid cell line. Phenotypic and functional characteristics. Am J Pathol. 1999; 155 4: 1229–1240.
  • Leite MI, Jones M, Strobel P, Marx A, Gold R, Niks E, Verschuuren JJ, Berrih-Aknin S, Scaravilli F, Canelhas A, Morgan BP, Vincent A, Willcox N. Myasthenia gravis thymus: Complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am J Pathol. 2007; 171 3: 893–905.
  • Roxanis I, Micklem K, McConville J, Newsom-Davis J, Willcox N. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol. 2002; 125 1–2: 185–197.
  • Poëa-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, Bidault J, Tzartos S, Berrih-Aknin S. Effects of cytokines on acetylcholine receptor expression: Implications for myasthenia gravis. J Immunol. 2005; 174 10: 5941–5949.
  • Confalonieri P, Antozzi C, Cornelio F, Simoncini O, Mantegazza R. Immune activation in myasthenia gravis: Soluble interleukin-2 receptor, interferon-gamma and tumor necrosis factor-alpha levels in patients’ serum. J Neuroimmunol. 1993; 48 1: 33–36.
  • Yoshikawa H, Satoh K, Yasukawa Y, Yamada M. Cytokine secretion by peripheral blood mononuclear cells in myasthenia gravis. J Clin Neurosci. 2002; 9 2: 133–136.
  • Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003; 197 6: 711–723.
  • Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V, Gregersen PK, Behrens TW. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA. 2003; 100 5: 2610–2615.
  • Bolinger AM, Taeubel MA. Recombinant interferon gamma for treatment of chronic granulomatous disease and other disorders. Clin Pharm. 1992; 11 10: 834–850 quiz 92–94.
  • Piccolo G, Franciotta D, Versino M, Alfonsi E, Lombardi M, Poma G. Myasthenia gravis in a patient with chronic active hepatitis C during interferon-alpha treatment. J Neurol Neurosurg Psych. 1996; 60 3: 348.
  • Mase G, Zorzon M, Biasutti E, Vitrani B, Cazzato G, Urban F, Frezza M. Development of myasthenia gravis during interferon-alpha treatment for anti-HCV positive chronic hepatitis. J Neurol Neurosurg Psych. 1996; 60 3: 348–349.
  • Dionisiotis J, Zoukos Y, Thomaides T. Development of myasthenia gravis in two patients with multiple sclerosis following interferon beta treatment. J Neurol Neurosurg Psych. 2004; 75 7: 1079.
  • Batocchi AP, Evoli A, Servidei S, Palmisani MT, Apollo F, Tonali P. Myasthenia gravis during interferon alpha therapy. Neurology. 1995; 45 2: 382–383.
  • Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R, Newsom-Davis J, Willcox N. Anti-cytokine autoantibodies in autoimmunity: Preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003; 132 1: 128–136.
  • Meloni A, Furcas M, Cetani F, Marcocci C, Falorni A, Perniola R, Pura M, Boe Wolff AS, Husebye ES, Lilic D, Ryan KR, Gennery AR, Cant AJ, Abinun M, Spickett GP, Arkwright PD, Denning D, Costigan C, Dominguez M, McConnell V, Willcox N. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2008; 93 11: 4389–4397.
  • Savino W. The thymus is a common target organ in infectious diseases. PLoS Pathog. 2006; 2 6: e62.
  • Bach JF. Infections and autoimmune diseases. J Autoimmun. 2005; 25S:74–80.
  • Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MB. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest. 1989; 84 4: 1174–1180.
  • Kott E, Hahn T, Huberman M, Levin S, Schattner A. Interferon system and natural killer cell activity in myasthenia gravis. Q J Med. 1990; 76 281: 951–960.
  • Colonna M. Toll-like receptors and IFN-alpha: Partners in autoimmunity. J Clin Invest. 2006; 116 9: 2319–2322.
  • Wagner H. Endogenous TLR ligands and autoimmunity. Adv Immunol. 2006; 91:159–173.
  • Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, Novellino L, Cornelio F, Mantegazza R. Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol. 2005; 167 1: 129–139.
  • Gu D, Wogensen L, Calcutt NA, Xia C, Zhu S, Merlie JP, Fox HS, Lindstrom J, Powell HC, Sarvetnick N. Myasthenia gravis-like syndrome induced by expression of interferon gamma in the neuromuscular junction. J Exp Med. 1995; 181 2: 547–557.
  • Balasa B, Deng C, Lee J, Bradley LM, Dalton DK, Christadoss P, Sarvetnick N. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med. 1997; 186 3: 385–391.
  • Zhang GX, Xiao BG, Bai XF, van der Meide PH, Orn A, Link H. Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. J Immunol. 1999; 162 7: 3775–3781.
  • Chang JH, Kim YJ, Han SH, Kang CY. IFN-gamma-STAT1 signal regulates the differentiation of inducible Treg: Potential role for ROS-mediated apoptosis. Eur J Immunol. 2009; 39 5: 1241–1251.
  • Cyster JG. Chemokines and cell migration in secondary lymphoid organs. Science. 1999; 286 5447: 2098–2102.
  • Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B. B-cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med. 1998; 187 4: 655–660.
  • Weyand CM, Goronzy JJ. Ectopic germinal center formation in rheumatoid synovitis. Ann N Y Acad Sci. 2003; 987:140–149.
  • Ishikawa S, Matsushima K. Aberrant B1-cell trafficking in a murine model for lupus. Front Biosci. 2007; 12:1790–1803.
  • Saito R, Onodera H, Tago H, Suzuki Y, Shimizu M, Matsumura Y, Kondo T, Itoyama Y. Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients. J Neuroimmunol. 2005; 170 1–2: 172–178.
  • Moser B, Schaerli P, Loetscher P. CXCR5(+) T cells: Follicular homing takes center stage in T-helper-cell responses. Trends Immunol. 2002; 23 5: 250–254.
  • Annunziato F, Romagnani P, Cosmi L, Lazzeri E, Romagnani S. Chemokines and lymphopoiesis in human thymus. Trends Immunol. 2001; 22 5: 277–281.
  • Liu C, Ueno T, Kuse S, Saito F, Nitta T, Piali L, Nakano H, Kakiuchi T, Lipp M, Hollander GA, Takahama Y. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood. 2005; 105 1: 31–39.
  • Ueno T, Hara K, Willis MS, Malin MA, Hopken UE, Gray DH, Matsushima K, Lipp M, Springer TA, Boyd RL, Yoshie O, Takahama Y. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity. 2002; 16 2: 205–218.
  • Berrih-Aknin S, Cohen-Kaminsky S, Truffault F. T-cell receptor expression in the thymus from patients with myasthenia gravis. Ann N Y Acad Sci. 1995; 756:438–440.
  • Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA. 1998; 95 1: 258–263.
  • Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T-cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol. 2005; 6 9: 895–901.
  • Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A, Matsushima K, Kelvin DJ, Oppenheim JJ. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T-cell adhesion to endothelial cells. J Exp Med. 1993; 177 6: 1809–1814.
  • Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev. 2009; 8 5: 379–383.
  • Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J, Fuchs S, Souroujon MC. Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis. J Immunol. 2005; 174 9: 5324–5331.
  • Nagakubo D, Murai T, Tanaka T, Usui T, Matsumoto M, Sekiguchi K, Miyasaka M. A high endothelial venule secretory protein, mac25/angiomodulin, interacts with multiple high endothelial venule-associated molecules including chemokines. J Immunol. 2003; 171 2: 553–561.
  • Kwak HB, Ha H, Kim HN, Lee JH, Kim HS, Lee S, Kim HM, Kim JY, Kim HH, Song YW, Lee ZH. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum. 2008; 58 5: 1332–1342.
  • Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, Inoue J, Akiyama T, Takahama Y. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity. 2008; 29 3: 438–450.
  • White AJ, Withers DR, Parnell SM, Scott HS, Finke D, Lane PJ, Jenkinson EJ, Anderson G. Sequential phases in the development of Aire-expressing medullary thymic epithelial cells involve distinct cellular input. Eur J Immunol. 2008; 38 4: 942–947.
  • Bleul CC, Boehm T. Chemokines define distinct microenvironments in the developing thymus. Eur J Immunol. 2000; 30 12: 3371–3379.
  • Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol. 2005; 23:127–159.
  • Hernandez-Lopez C, Valencia J, Hidalgo L, Martinez VG, Zapata AG, Sacedon R, Varas A, Vicente A. CXCL12/CXCR4 signaling promotes human thymic dendritic cell survival regulating the Bcl-2/Bax ratio. Immunol Lett. 2008; 120 1–2: 72–78.
  • Zaitseva M, Kawamura T, Loomis R, Goldstein H, Blauvelt A, Golding H. Stromal-derived factor 1 expression in the human thymus. J Immunol. 2002; 168 6: 2609–2617.
  • Plotkin J, Prockop SE, Lepique A, Petrie HT. Critical role for CXCR4 signaling in progenitor localization and T-cell differentiation in the postnatal thymus. J Immunol. 2003; 171 9: 4521–4527.
  • Norment AM, Bogatzki LY, Gantner BN, Bevan MJ. Murine CCR9, a chemokine receptor for thymus-expressed chemokine that is up-regulated following pre-TCR signaling. J Immunol. 2000; 164 2: 639–648.
  • Youn BS, Kim CH, Smith FO, Broxmeyer HE. TECK, an efficacious chemoattractant for human thymocytes, uses GPR-9-6/CCR9 as a specific receptor. Blood. 1999; 94 7: 2533–2536.
  • Annunziato F, Romagnani P, Cosmi L, Beltrame C, Steiner BH, Lazzeri E, Raport CJ, Galli G, Manetti R, Mavilia C, Vanini V, Chantry D, Maggi E, Romagnani S. Macrophage-derived chemokine and EBI1-ligand chemokine attract human thymocytes in different stage of development and are produced by distinct subsets of medullary epithelial cells: Possible implications for negative selection. J Immunol. 2000; 165 1: 238–246.
  • Kwan J, Killeen N. CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol. 2004; 172 7: 3999–4007.
  • Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, Arakaki R, Hayashi Y, Kitagawa T, Lipp M, Boyd RL, Takahama Y. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity. 2006; 24 2: 165–177.
  • Ueno T, Saito F, Gray DH, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL, Takahama Y. CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med. 2004; 200 4: 493–505.
  • Poznansky MC, Olszak IT, Evans RH, Wang Z, Foxall RB, Olson DP, Weibrecht K, Luster AD, Scadden DT. Thymocyte emigration is mediated by active movement away from stroma-derived factors. J Clin Invest. 2002; 109 8: 1101–1110.
  • Vianello F, Kraft P, Mok YT, Hart WK, White N, Poznansky MC. A CXCR4-dependent chemorepellent signal contributes to the emigration of mature single-positive CD4 cells from the fetal thymus. J Immunol. 2005; 175 8: 5115–5125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.