367
Views
38
CrossRef citations to date
0
Altmetric
Articles

Lupus autoimmunity altered by cellular methylation metabolism

, , , , , & show all
Pages 21-31 | Received 22 Jun 2012, Accepted 15 Sep 2012, Published online: 01 Nov 2012

References

  • Renaudineau Y., Youinou P.. Epigenetics and autoimmunity, with special emphasis on methylation. Keio J. Med.. 2011; 60:10–16.
  • Sunahori K., Juang,V Y. T., Kyttaris C., Tsokos G. C.. Promoter hypomethylation results in increased expression of protein phosphatase 2A in T cells from patients with systemic lupus erythematosus. J. Immunol.. 2011; 186:4508–4517.
  • Mowen K. A., Tang J., Zhu W., . Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell. 2001; 104:731–741.
  • Richard S., Morel M., Cleroux P.. Arginine methylation regulates IL-2 gene expression: a role for protein arginine methyltransferase 5 (PRMT5). Biochem. J.. 2005; 388:379–386.
  • Blanchet F., Cardona A., Letimier F. A., Hershfield M. S., Acuto O.. CD28 costimulatory signal induces protein arginine methylation in T cells. J. Exp. Med.. 2005; 202:371–377.
  • Brahms H., Raymackers J., Union A., . The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J. Biol. Chem.. 2000; 275:17122–17129.
  • Doyle H. A., Gee R. J., Mamula M. J.. A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production. J. Immunol.. 2003; 171:2840–2847.
  • Yang M. L., Doyle H. A., Gee R. J., . Intracellular protein modification associated with altered T cell functions in autoimmunity. J. Immunol.. 2006; 177:4541–4549.
  • Pritzker L. B., Joshi S., Gowan J. J., Harauz G., Moscarello M. A.. Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry. 2000; 39:5374–5381.
  • Della Ragione F., Pegg A. E.. Effect of analogues of 5′-methylthioadenosine on cellular metabolism. Inactivation of S-adenosylhomocysteine hydrolase by 5′-isobutylthioadenosine. Biochem. J.. 1983; 210:429–435.
  • Ferro A. J., Vandenbark A. A., MacDonald M. R.. Inactivation of S-adenosylhomocysteine hydrolase by 5′-deoxy-5′-methylthioadenosine. Biochem. Biophys. Res. Commun.. 1981; 100:523–531.
  • Fox I. H., Palella R. D., Thompson D., Herring C.. Adenosine metabolism: modification by S-adenosylhomocysteine and 5′-methylthioadenosine. Arch. Biochem. Biophys.. 1982; 215:302–308.
  • Peng S. L., Fatenejad S., Craft J.. Induction of nonpathologic, humoral autoimmunity in lupus-prone mice by a class II-restricted, transgenic alpha beta T cell. Separation of autoantigen-specific and -nonspecific help. J. Immunol.. 1996; 157:5225–5230.
  • Kracker S., Radbruch A.. Immunoglobulin class switching: in vitro induction and analysis. Meth. Mol. Biol.. 2004; 271:149–159.
  • Savarese T. M., Crabtree G. W., Parks R. E.Jr. 5′-Methylthioadenosine phosphorylase-L. Substrate activity of 5′-deoxyadenosine with the enzyme from Sarcoma 180 cells. Biochem. Pharmacol.. 1981; 30:189–199.
  • Mamula M. J., Gee R. J., Elliott J. I., . Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J. Biol. Chem.. 1999; 274:22321–22327.
  • Clarke S. G.. 2006. Inhibition of mammalian protein methyltransferases by 5′-methylthioadenosine (MTA): A mechanism of action of dietary SAMe?Protein Methyltransferases. The Enzymes.. XXIV. Amsterdam:: Academic Press. 467–493.
  • Li T. W., Yang H., Peng H., . Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice. Carcinogenesis. 2012; 33:427–435.
  • Lakowski T. M., Frankel A.. Sources of S-adenosyl-L-homocysteine background in measuring protein arginine N-methyltransferase activity using tandem mass spectrometry. Anal. Biochem.. 2010; 396:158–160.
  • Kamatani N., Yu A. L., Carson D. A.. Deficiency of methylthioadenosine phosphorylase in human leukemic cells in vivo. Blood. 1982; 60:1387–1391.
  • Batova A., Cottam H., Yu J., . EFA (9-beta-D-erythrofuranosyladenine) is an effective salvage agent for methylthioadenosine phosphorylase-selective therapy of T-cell acute lymphoblastic leukemia with L-alanosine. Blood. 2006; 107:898–903.
  • Harasawa H., Yamada Y., Kudoh M., . Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). Leukemia. 2002; 16:1799–1807.
  • Vertongen F., Mandelbaum I.. Methylthioadenosine phosphorylase and purine nucleoside phosphorylase in B-chronic lymphocytic leukemia. Thymus. 1984; 6:359–364.
  • German D. C., Bloch C. A., Kredich N. M.. Measurements of S-adenosylmethionine and L-homocysteine metabolism in cultured human lymphoid cells. J. Biol. Chem.. 1983; 258:10997–11003.
  • Wu Q. L., Fu Y. F., Zhou W. L., . Inhibition of S-adenosyl-L-homocysteine hydrolase induces immunosuppression. J. Pharmacol. Exp. Ther.. 2005; 313:705–711.
  • Fu Y. F., Wang J. X., Zhao Y., . S-adenosyl-L-homocysteine hydrolase inactivation curtails ovalbumin-induced immune responses. J Pharmacol. Exp. Ther.. 2006; 316:1229–1237.
  • Wolos J. A., Frondorf K. A., Babcock G. F., Stripp S. A., Bowlin T. L.. Immunomodulation by an inhibitor of S-adenosyl-L-homocysteine hydrolase: inhibition of in vitro and in vivo allogeneic responses. Cell Immunol.. 1993; 149:402–408.
  • Wolos J. A., Frondorf K. A., Davis G. F., . Selective inhibition of T cell activation by an inhibitor of S-adenosyl-L-homocysteine hydrolase. J. Immunol.. 1993; 150:3264–3273.
  • Lawson B. R., Eleftheriadis T., Tardif V., . Transmethylation in immunity and autoimmunity. Clin. Immunol. 2012; 143:8–21.
  • Saso Y., Conner E. M., Teegarden B. R., Yuan C. S.. S-Adenosyl-L-homocysteine hydrolase inhibitor mediates immunosuppressive effects in vivo: suppression of delayed type hypersensitivity ear swelling and peptidoglycan polysaccharide-induced arthritis. J. Pharmacol. Exp. Ther.. 2001; 296:106–112.
  • Lawson B. R., Manenkova Y., Ahamed J., . Inhibition of transmethylation down-regulates CD4 T cell activation and curtails development of autoimmunity in a model system. J. Immunol.. 2007; 178:5366–5374.
  • Wolford R. W., Riscoe M. K., Johnson L., Ferro A. J., Fitchen J. H.. Effect of 5′-methylthioadenosine (a naturally occurring nucleoside) on murine hematopoiesis. Exp. Hematol.. 1984; 12:867–871.
  • Moreno B., Hevia H., Santamaria M., . Methylthioadenosine reverses brain autoimmune disease. Ann. Neurol.. 2006; 60:323–334.
  • Moreno B., Fernandez-Diez B., Di Penta A., Villoslada P.. Preclinical studies of methylthioadenosine for the treatment of multiple sclerosis. Mult. Scler.. 2010; 16:1102–1108.
  • Law R. E., Stimmel J. B., Damore M. A., . Lipopolysaccharide-induced NF-kappa B activation in mouse 70Z/3 pre-B lymphocytes is inhibited by mevinolin and 5′-methylthioadenosine: roles of protein isoprenylation and carboxyl methylation reactions. Mol. Cell Biol.. 1992; 12:103–111.
  • Veal N., Hsieh C. L., Xiong S., . Inhibition of lipopolysaccharide-stimulated TNF-alpha promoter activity by S-adenosylmethionine and 5′-methylthioadenosine. Am. J. Physiol. Gastrointest. Liver Physiol.. 2004; 287:G352–G362.
  • Ara A. I., Xia M., Ramani K., Mato J. M., Lu S. C.. S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. Hepatology. 2008; 47:1655–1666.
  • Berasain C., Hevia H., Fernandez-Irigoyen J., . Methylthioadenosine phosphorylase gene expression is impaired in human liver cirrhosis and hepatocarcinoma. Biochim. Biophys. Acta. 2004; 1690:276–284.
  • 't Hart B. A., Hintzen R. Q., Laman J. D.. Multiple sclerosis—a response-to-damage model. Trends Mol. Med.. 2009; 15:235–244.
  • Stekman I. L., Blasini A. M., Leon-Ponte M., . Enhanced CD3-mediated T lymphocyte proliferation in patients with systemic lupus erythematosus. Arthritis Rheum.. 1991; 34:459–467.
  • Vratsanos G. S., Jung S., Park Y. M., Craft J.. CD4(+) T cells from lupus-prone mice are hyperresponsive to T cell receptor engagement with low and high affinity peptide antigens: a model to explain spontaneous T cell activation in lupus. J. Exp. Med.. 2001; 193:329–337.
  • Kong P. L., Odegard J. M., Bouzahza F., . Intrinsic T cell defects in systemic autoimmunity. Ann. NY Acad. Sci.. 2003; 987:60–67.
  • Gessl A., Waldhausl W.. Increased CD69 and human leukocyte antigen-DR expression on T lymphocytes in insulin-dependent diabetes mellitus of long standing. J. Clin. Endocrinol. Metab.. 1998; 83:2204–2209.
  • Portales-Perez D., Gonzalez-Amaro R., Abud-Mendoza C., Sanchez-Armass S.. Abnormalities in CD69 expression, cytosolic pH and Ca2+ during activation of lymphocytes from patients with systemic lupus erythematosus. Lupus. 1997; 6:48–56.
  • Hernandez-Garcia C., Fernandez-Gutierrez B., Morado I. C., Banares A. A., Jover J. A.. The CD69 activation pathway in rheumatoid arthritis synovial fluid T cells. Arthritis Rheum.. 1996; 39:1277–1286.
  • Crispin J. C., Kyttaris V. C., Juang Y. T., Tsokos G. C.. How signaling and gene transcription aberrations dictate the systemic lupus erythematosus T cell phenotype. Trends Immunol.. 2008; 29:110–115.
  • Akahoshi M., Nakashima H., Tanaka Y., . Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum.. 1999; 42:1644–1648.
  • Tucci M., Stucci S., Strippoli S., Silvestris F.. Cytokine overproduction, T-cell activation, and defective T-regulatory functions promote nephritis in systemic lupus erythematosus. J. Biomed. Biotechnol.. 2010; 2010:457146.
  • Liossis S. N., Ding X. Z., Dennis G. J., Tsokos G. C.. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. J. Clin. Invest.. 1998; 101:1448–1457.
  • Yi Y., McNerney M., Datta S. K.. Regulatory defects in Cbl and mitogen-activated protein kinase (extracellular signal-related kinase) pathways cause persistent hyperexpression of CD40 ligand in human lupus T cells. J. Immunol.. 2000; 165:6627–6634.
  • Tomasi M. L., Tomasi I., Ramani K., . S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. Hepatology. 2012; 56:982–993.
  • Yamaji S., Droggiti A., Lu S. C., . Adenosylmethionine regulates connexins sub-types expressed by hepatocytes. Euro. J. Cell Biol.. 2011; 90:312–322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.