699
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Hormones and AID: Balancing immunity and autoimmunity

, , &
Pages 128-137 | Received 07 Nov 2012, Accepted 07 Nov 2012, Published online: 10 Jan 2013

References

  • Zerrahn J., Held W., Raulet D. H.. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell. 1997; 88:627–636.
  • Quintero O. L., Amador-Patarroyo M. J., Montoya-Ortiz G., Rojas-Villarraga A., Anaya J. -M.. Autoimmune disease and gender: plausible mechanisms for the female predominance of autoimmunity. J. Autoimmun. 2012; 38:J109–J119.
  • Nussinovitch U., Shoenfeld Y.. The role of gender and organ specific autoimmunity. Autoimmun. Rev. 2012; 11:A377–A385.
  • Liu S. M., Sutherland A. P. R., Zhang Z., . Overexpression of the Ctla-4 isoform lacking exons 2 and 3 causes autoimmunity. J. Immunol. 2012; 188:155–162.
  • Walunas T. L., Lenschow D. J., Bakker C. Y., . CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994; 1:405–413.
  • Fierabracci A.. Recent insights into the role and molecular mechanisms of the autoimmune regulator (AIRE) gene in autoimmunity. Autoimmun. Rev. 2011; 10:137–143.
  • Matsumoto M.. The role of autoimmune regulator (Aire) in the development of the immune system. Microbes Infect. 2009; 11:928–934.
  • Jeon M. -S., Atfield A., Venuprasad K., . Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity. 2004; 21:167–177.
  • Krammer P. H.. CD95's deadly mission in the immune system. Nature. 2000; 407:789–795.
  • Siegel R. M., Chan F. K., Chun H. J., Lenardo M. J.. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature Immunol. 2000; 1:469–474.
  • Hori S., Nomura T., Sakaguchi S.. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299:1057–1061.
  • Flodström-Tullberg M., Bryceson Y. T., Shi F. -D., Höglund P., Ljunggren H. -G.. Natural killer cells in human autoimmunity. Curr. Opin. Immunol. 2009; 21:634–640.
  • Cusick M. F., Libbey J. E., Fujinami R. S.. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol. 2012; 42:102–111.
  • Lemoine S., Morva A., Youinou P., Jamin C.. Regulatory B cells in autoimmune diseases: how do they work?. Ann. NY Acad. Sci. 2009; 1173:260–267.
  • Mariño E., Grey S. T.. B cells as effectors and regulators of autoimmunity. Autoimmunity. 2012; 45:377–387.
  • Grimaldi C. M., Hicks R., Diamond B.. B cell selection and susceptibility to autoimmunity. J. Immunol. 2005; 174:1775–1781.
  • Königsberger S., Prodöhl J., Stegner D., . Altered BCR signalling quality predisposes to autoimmune disease and a pre-diabetic state. EMBO J. 2012; 31:3363–3374.
  • Goodnow C. C.. Multistep pathogenesis of autoimmune disease. Cell. 2007; 130:25–35.
  • Meffre E., Wardemann H.. B-cell tolerance checkpoints in health and autoimmunity. Curr. Opin. Immunol. 2008; 20:632–638.
  • Atassi M. Z., Casali P.. Molecular mechanisms of autoimmunity. Autoimmunity. 2008; 41:123–132.
  • Lleo A., Invernizzi P., Gao B., Podda M., Gershwin M. E.. Definition of human autoimmunity–autoantibodies versus autoimmune disease. Autoimmun. Rev. 2010; 9:A259–A266.
  • Kronenberg M., Rudensky A.. Regulation of immunity by self-reactive T cells. Nature. 2005; 435:598–604.
  • Rada C., Milstein C.. The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially. EMBO J. 2001; 20:4570–4576.
  • Saribasak H., Gearhart P. J.. Does DNA repair occur during somatic hypermutation?. Semin. Immunol. 2012; 24:287–292.
  • Xu Z., Zan H., Pone E. J., Mai T., Casali P.. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 2012; 12:517–531.
  • Di Noia J. M., Neuberger M. S.. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 2007; 76:1–22.
  • Stavnezer J., Guikema J., Schrader C.. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 2008; 26:261–292.
  • Peters A., Storb U.. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity. 1996; 4:57–65.
  • Willmann K. L., Milosevic S., Paulkin S., . A role for the RNA pol II-associated PAF complex in AID-induced immune diversification. J. Exp. Med. 2012; 209:2099–2111.
  • Basu U., Meng F. -L., Keim C., . The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell. 2011; 144:353–363.
  • Pavri R., Gazumyan A., Jankovic M., . Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell. 2010; 143:122–133.
  • Stanlie A., Begum N. A., Akiyama H., Honjo T.. The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination. PLoS Genet. 2012; 8:e1002675.
  • Petersen-Mahrt S.. DNA deamination in immunity. Immunol. Rev. 2005; 203:80–97.
  • Beale R. C. L., Petersen-Mahrt S. K., Watt I. N., . Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J. Mol. Biol. 2004; 337:585–596.
  • Bransteitter R., Pham P., Scharff M. D., Goodman M. F.. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA. 2003; 100:4102–4107.
  • Morgan H. D., Dean W., Coker H. A., Reik W., Petersen-Mahrt S. K.. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem. 2004; 279:52353–52360.
  • Harris R. S., Bishop K. N., Sheehy A. M., . DNA deamination mediates innate immunity to retroviral infection. Cell. 2003; 113:803–809.
  • Harris R. S., Petersen-Mahrt S. K., Neuberger M. S.. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell. 2002; 10:1247–1253.
  • Petersen-Mahrt S. K., Neuberger M. S.. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J. Biol. Chem. 2003; 278:19583–19586.
  • Pauklin S., Sernández I. V., Bachmann G., Ramiro A. R., Petersen-Mahrt S. K.. Estrogen directly activates AID transcription and function. J. Exp. Med. 2009; 206:99–111.
  • Rada C., Jarvis J. M., Milstein C.. AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization. Proc. Natl. Acad. Sci. USA. 2002; 99:7003–7008.
  • Brar S. S., Watson M., Diaz M.. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J. Biol. Chem. 2004; 279:26395–26401.
  • Ito S., Nagaoka H., Shinkura R., . Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc. Natl. Acad. Sci. USA. 2004; 101:1975–1980.
  • Patenaude A. M., Orthwein A., Hu Y., . Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nat. Struct. Mol. Biol. 2009; 16:517–527.
  • Revy P., Muto T., Levy Y., . Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000; 102:565–575.
  • Pasqualucci L., Guglielmino R., Houldsworth J., . Expression of the AID protein in normal and neoplastic B cells. Blood. 2004; 104:3318–3325.
  • Ramiro A. R., Jankovic M., Callen E., . Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature. 2006; 440:105–109.
  • Ramiro A. R., Jankovic M., Eisenreich T., . AID is required for c-myc/IgH chromosome translocations in vivo. Cell. 2004; 118:431–438.
  • Endo Y., Marusawa H., Kinoshita K., . Expression of activation-induced cytidine deaminase in human hepatocytes via NF-kappaB signaling. Oncogene. 2007; 26:5587–5595.
  • Okazaki I. -m., Hiai H., Kakazu N., . Constitutive expression of AID leads to tumorigenesis. J Exp Med. 2003; 197:1173–1181.
  • Takai A., Toyoshima T., Uemura M., . A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene. 2009; 28:469–478.
  • Häsler J., Rada C., Neuberger M. S.. The cytoplasmic AID complex. Semin. Immunol. 2012; 24:273–280.
  • Larijani M., Martin A.. The biochemistry of activation-induced deaminase and its physiological functions. Semin. Immunol. 2012; 24:255–263.
  • Orthwein A., Di Noia J. M.. Activation induced deaminase: How much and where?. Semin. Immunol. 2012; 24:246–254.
  • Vuong B. Q., Chaudhuri J.. Combinatorial mechanisms regulating AID-dependent DNA deamination: Interacting proteins and post-translational modifications. Semin. Immunol. 2012; 24:264–272.
  • Dedeoglu F., Horwitz B., Chaudhuri J., Alt F. W., Geha R. S.. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFkappaB. Int. Immunol. 2004; 16:395–404.
  • Gonda H., Sugai M., Nambu Y., . The balance between Pax5 and Id2 activities is the key to AID gene expression. J Exp Med. 2003; 198:1427–1437.
  • Xu Z., Pone E. J., Al-Qahtani A., . Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit. Rev. Immunol. 2007; 27:367–397.
  • Dorsett Y., McBride K. M., Jankovic M., . MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 2008; 28:630–638.
  • de Yébenes V. G., Belver L., Pisano D. G., . miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 2008; 205:2199–2206.
  • Mai T., Zan H., Zhang J., . Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation. J. Biol. Chem. 2010; 285:37797–37810.
  • Pauklin S., Petersen-Mahrt S. K.. Progesterone inhibits activation-induced deaminase by binding to the promoter. J. Immunol. 2009; 183:1238–1244.
  • Whitacre C. C.. Sex differences in autoimmune disease. Nat. Immunol. 2001; 2:777–780.
  • Whitacre C. C., Reingold S. C., O'Looney P. A.. A gender gap in autoimmunity. Science. 1999; 283:1277–1278.
  • Peeva E., Zouali M.. Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol. Lett. 2005; 101:123–143.
  • Medina K. L., Smithson G., Kincade P. W.. Suppression of B lymphopoiesis during normal pregnancy. J. Exp. Med. 1993; 178:1507–1515.
  • Smithson G., Beamer W. G., Shultz K. L., . Increased B lymphopoiesis in genetically sex steroid-deficient hypogonadal (hpg) mice. J. Exp. Med. 1994; 180:717–720.
  • Carlsten H., Holmdahl R., Tarkowski A., Nilsson L. A.. Oestradiol- and testosterone-mediated effects on the immune system in normal and autoimmune mice are genetically linked and inherited as dominant traits. Immunology. 1989; 68:209–214.
  • Erlandsson M. C., Jonsson C. A., Islander U., Ohlsson C., Carlsten H.. Oestrogen receptor specificity in oestradiol-mediated effects on B lymphopoiesis and immunoglobulin production in male mice. Immunology. 2003; 108:346–351.
  • Roubinian J., Talal N., Siiteri P. K., Sadakian J. A.. Sex hormone modulation of autoimmunity in NZB/NZW mice. Arthritis Rheum. 1979; 22:1162–1169.
  • Carlsten H., Tarkowski A., Holmdahl R., Nilsson L. A.. Oestrogen is a potent disease accelerator in SLE-prone MRL lpr/lpr mice. Clin Exp Immunol. 1990; 80:467–473.
  • Verthelyi D., Ahmed S. A.. 17 beta-estradiol, but not 5 alpha-dihydrotestosterone, augments antibodies to double-stranded deoxyribonucleic acid in nonautoimmune C57BL/6J mice. Endocrinology. 1994; 135:2615–2622.
  • Li J., McMurray R. W.. Effects of estrogen receptor subtype-selective agonists on autoimmune disease in lupus-prone NZB/NZW F1 mouse model. Clin. Immunol. 2007; 123:219–226.
  • Bynoe M. S., Grimaldi C. M., Diamond B.. Estrogen up-regulates Bcl-2 and blocks tolerance induction of naive B cells. Proc. Natl. Acad. Sci. USA. 2000; 97:2703–2708.
  • Beagley K. W., Gockel C. M.. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol. Med. Microbiol. 2003; 38:13–22.
  • Kanda N., Tsuchida T., Tamaki K.. Estrogen enhancement of anti-double-stranded DNA antibody and immunoglobulin G production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheumat. 1999; 42:328–337.
  • Mantalaris A., Panoskaltsis N., Sakai Y., . Localization of androgen receptor expression in human bone marrow. J. Pathol. 2001; 193:361–366.
  • Cutolo M., Balleari E., Accardo S., . Preliminary results of serum androgen level testing in men with rheumatoid arthritis. Arthritis Rheum. 1984; 27:958–959.
  • Cutolo M.. Androgens in rheumatoid arthritis: when are they effectors?. Arthritis Res. Ther. 2009; 11:126.
  • Theofilopoulos A. N., Dixon F. J.. Murine models of systemic lupus erythematosus. Adv. Immunol. 1985; 37:269–390.
  • Zan H., Zhang J., Ardeshna S., . Lupus-prone MRL/faslpr/lpr mice display increased AID expression and extensive DNA lesions, comprising deletions and insertions, in the immunoglobulin locus: concurrent upregulation of somatic hypermutation and class switch DNA recombination. Autoimmunity. 2009; 42:89–103.
  • Jiang C., Foley J., Clayton N., . Abrogation of lupus nephritis in activation-induced deaminase-deficient MRL/lpr mice. J. Immunol. 2007; 178:7422–7431.
  • Mountz J. D., Yang P., Wu Q., . Genetic segregation of spontaneous erosive arthritis and generalized autoimmune disease in the BXD2 recombinant inbred strain of mice. Scand. J. Immunol. 2005; 61:128–138.
  • Hsu H. -C., Wu Y., Yang P., . Overexpression of activation-induced cytidine deaminase in B cells is associated with production of highly pathogenic autoantibodies. J. Immunol. 2007; 178:5357–5365.
  • Jiang C., Zhao M. -L., Waters K. M., Diaz M.. Activation-induced deaminase contributes to the antibody-independent role of B cells in the development of autoimmunity. Autoimmunity. 2012; 45:440–448.
  • Meyers G., Ng Y. S., Bannock J. M., . Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc. Natl. Acad. Sci. USA. 2011; 108:11554–11559.
  • Chen L., Guo L., Tian J., Zheng B., Han S.. Deficiency in activation-induced cytidine deaminase promotes systemic autoimmunity in lpr mice on a C57BL/6 background. Clin. Exp. Immunol. 2010; 159:169–175.
  • Agrawal A., Eastman Q. M., Schatz D. G.. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature. 1998; 394:744–751.
  • Gellert M., Hesse J. E., Hiom K., . V(D)J recombination: links to transposition and double-strand break repair. Cold Spring Harb. Symp. Quant. Biol. 1999; 64:161–167.
  • Bestor T. H.. Sex brings transposons and genomes into conflict. Genetica. 1999; 107:289–295.
  • Popp C., Dean W., Feng S., . Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010; 463:1101–1105.
  • Butterworth M., McClellan B., Allansmith M.. Influence of sex in immunoglobulin levels. Nature. 1967; 214:1224–1225.
  • Eidinger D., Garrett T. J.. Studies of the regulatory effects of the sex hormones on antibody formation and stem cell differentiation. J. Exp. Med. 1972; 136:1098–1116.
  • Macaulay E. C., Weeks R. J., Andrews S., Morison I. M.. Hypomethylation of functional retrotransposon-derived genes in the human placenta. Mamm. Genome. 2011; 22:722–735.
  • Schmitz K. -M., Petersen-Mahrt S. K.. AIDing the immune system-DIAbolic in cancer. Semin. Immunol. 2012; 24:241–245.
  • Nik-Zainal S., Alexandrov L. B., Wedge D. C., . Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell. 2012; 149:979–993.
  • Stephens P. J., Tarpey P. S., Davies H., . The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012; 486:400–404.
  • Franchini D. M., Schmitz K. M., Petersen-Mahrt S. K.. 5-Methylcytosine DNA Demethylation: More than losing a methyl group. Ann. Rev. Gen. 2012; 46:419–441.
  • Wilks A. F., Cozens P. J., Mattaj I. W., Jost J. P.. Estrogen induces a demethylation at the 5’ end region of the chicken vitellogenin gene. Proc. Natl. Acad. Sci. USA. 1982; 79:4252–4255.
  • Metivier R., Huet G., Gallais R., . Dynamics of estrogen receptor-mediated transcriptional activation of responsive genes in vivo: apprehending transcription in four dimensions. Adv. Exp. Med. Biol. 2008; 617:129–138.
  • Strickland F. M., Hewagama A., Lu Q., . Environmental exposure, estrogen and two X chromosomes are required for disease development in an epigenetic model of lupus. J. Autoimmun. 2012; 38:135–143.
  • Qin H., Suzuki K., Nakata M., . Activation-induced cytidine deaminase expression in CD4+T cells is associated with a unique IL-10-producing subset that increases with age. PloS One. 2011; 6:e29141.
  • Barreto G., Schäfer A., Marhold J., . Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007; 445:671–675.
  • Schmitz K. -M., Schmitt N., Hoffmann-Rohrer U., . TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell. 2009; 33:344–353.
  • Rai K., Huggins I. J., James S. R., . DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008; 135:1201–1212.
  • Salvador J. M., Hollander M. C., Nguyen A. T., . Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity. 2002; 16:499–508.
  • Hui A. M., Zhang W., Chen W., . Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res. 2004; 64:9115–9123.
  • Oki T., Sowa Y., Hirose T., . Genistein induces Gadd45 gene and G2/M cell cycle arrest in the DU145 human prostate cancer cell line. FEBS Lett. 2004; 577:55–59.
  • Stein B., Yang M. X.. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol. Cell. Biol. 1995; 15:4971–4979.
  • Xing D., Oparil S., Yu H., . Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLoS ONE. 2012; 7:e36890.
  • White C. A., Seth Hawkins J., Pone E. J., . AID dysregulation in lupus-prone MRL/Fas(lpr/lpr) mice increases class switch DNA recombination and promotes interchromosomal c-Myc/IgH loci translocations: modulation by HoxC4. Autoimmunity. 2011; 44:585–598.
  • Chadwick C. C., Chippari S., Matelan E., . Identification of pathway-selective estrogen receptor ligands that inhibit NF-kappaB transcriptional activity. Proc. Natl. Acad. Sci. USA. 2005; 102:2543–2548.
  • Nettles K. W., Gil G., Nowak J., . CBP Is a dosage-dependent regulator of nuclear factor-kappaB suppression by the estrogen receptor. Mol. Endocrinol. 2008; 22:263–272.
  • Klinge C. M.. miRNAs and estrogen action. Trends Endocrinol. Metab. 2012; 23:223–233.
  • Yamagata K., Fujiyama S., Ito S., . Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol. Cell. 2009; 36:340–347.
  • Belver L., de Yébenes V. G., Ramiro A. R.. MicroRNAs Prevent the Generation of Autoreactive Antibodies. Immunity. 2010; 33:713–722.
  • Leng R. -X., Pan H. -F., Qin W. -Z., Chen G. -M., Ye D. -Q.. Role of microRNA-155 in autoimmunity. Cytokine Growth Factor Rev. 2011; 22:141–147.
  • Olson J. K., Croxford J. L., Miller S. D.. Virus-induced autoimmunity: potential role of viruses in initiation, perpetuation, and progression of T-cell-mediated autoimmune disease. Viral Immunol. 2001; 14:227–250.
  • Pender M. P.. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol. 2003; 24:584–588.
  • Wucherpfennig K. W.. Mechanisms for the induction of autoimmunity by infectious agents. J. Clin. Invest. 2001; 108:1097–1104.
  • Tobollik S., Meyer L., Buettner M., . Epstein-Barr virus nuclear antigen 2 inhibits AID expression during EBV-driven B-cell growth. Blood. 2006; 108:3859–3864.
  • Heath E., Begue-Pastor N., Chaganti S., . Epstein-Barr virus infection of naive B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog. 2012; 8:e1002697.
  • Igarashi M., Kawaguchi Y., Hirai K., Mizuno F.. Physical interaction of Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. J. Gen. Virol. 2003; 84:319–327.
  • Zhang Z., Teng C. T.. Estrogen receptor alpha and estrogen receptor-related receptor alpha1 compete for binding and coactivator. Mol Cell Endocrinol. 2001; 172:223–233.
  • Crouch E. E., Li Z., Takizawa M., . Regulation of AID expression in the immune response. J. Exp. Med. 2007; 204:1145–1156.
  • Gourzi P., Leonova T., Papavasiliou F. N.. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity. 2006; 24:779–786.
  • Jiang J., Lee E. J., Schmittgen T. D.. Increased expression of microRNA-155 in Epstein-Barr virus transformed lymphoblastoid cell lines. Genes Chromosomes Cancer. 2006; 45:103–106.
  • Yin Q., McBride J., Fewell C., . MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J. Virol. 2008; 82:5295–5306.
  • Müschen M., Re D., Jungnickel B., . Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J Exp Med. 2000; 192:1833–1840.
  • Takahashi T., Tanaka M., Brannan C. I., . Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994; 76:969–976.
  • Cohen P. L., Eisenberg R. A.. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 1991; 9:243–269.
  • Oliveira J. B., Fleisher T.. Autoimmune lymphoproliferative syndrome. Curr. Opin. Allergy Clin. Immunol. 2004; 4:497–503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.