559
Views
36
CrossRef citations to date
0
Altmetric
Review Article

Natural autoantibodies and associated B cells in immunity and autoimmunity

, &
Pages 138-147 | Received 07 Nov 2012, Accepted 07 Nov 2012, Published online: 10 Jan 2013

References

  • Guilbert B., Dighiero G., Avrameas S.. Naturally occuring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J. Immunol. 1982; 128:2779–2787.
  • Dighiero G., Lymberi P., Mazie J. C., . Murine hybridomas secreting natural monoclonal antibodies reacting with self antigens. J. Immunol. 1983; 131:2267–2272.
  • Dighiero G., Lymberi P., Guilbert B., Ternynck T., Avrameas S.. Natural autoantibodies constitute a substantial part of normal circulating immunoglobulin. Ann. N.Y. Acad. Sci. 1986; 475:135–145.
  • Coutinho A., Kazatchkine M. D., Avrameas S.. Natural autoantibodies. Curr. Opin. Immunol. 1995; 7:812–818.
  • Avrameas S.. Natural autoantibodies: from horror autotoxicus to gnothi seauton. Immunol. Today. 1991; 12:54.
  • Haspel M. V., Onodera T., Prabhakar B. S., . Virus-induced autoimmunity: monoclonal antibodies that react with endocrine tissues. Science. 1983; 220:304–306.
  • Haspel M. V., Onodera T., Prabhakar B. S., . Multiple organ-reactive monoclonal autoantibodies. Nature. 1983; 304:73–76.
  • Satoh J., Prabhakar B. S., Haspel M. V., Ginsberg-Fellner F., Notkins A. L.. Human monoclonal autoantibodies that react with multiple endocrine organs. N. Engl. J. Med. 1983; 309:217–220.
  • Casali P., Notkins A.. CD5+B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol. Today. 1989; 10:364–368.
  • Mouthon L., Nobrega A., Nicolas N., . Invariance and restriction toward a limited set of self-antigens characterize neonatal IgM antibody repertoires and prevail in autoreactive repertoires of healthy adults. Proc. Natl. Acad. Sci. USA. 1995; 92:3839–3843.
  • Chen Z. J., Wheeler C. J., Shi W., . Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur. J. Immunol. 1998; 28:989–994.
  • Merbl Y., Zucker-Toledano M., Quintana F., Cohen I.. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J. Clin. Invest. 2007; 117:712–718.
  • Dighiero G., Lymberi P., Holmberg D., . High frequency of natural autoantibodies in normal newborn mice. J. Immunol. 1985; 134:765–771.
  • Hooijkaas H., Benner R., Pleasants J. R., Wostmann B. S.. Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigenfree” diet. Eur. J. Immunol. 1984; 14:1127–1130.
  • Wardemann H., Yurasov S., Schaefer A., . Predominant autoantibody production by early human B cell precursors. Science. 2003; 301 5638: 1374–1377.
  • Gonzalez R., Charlemagne J., Mahana W., Avrameas S.. Specificity of natural serum antibodies present in phylogenetically distinct fish species. Immunology. 1988; 63:31–36.
  • Flajnik M., Rumfelt L.. Early and natural antibodies in non-mammalian vertebrates. Curr. Top. Microbiol. Immunol. 2000; 252:233–240.
  • Souroujon M., White-Scharf M. E., Andreschwartz J., Gefter M. L., Schwartz R. S.. Preferential autoantibody reactivity of the preimmune B cell repertoire in normal mice. J. Immunol. 1988; 140:4173–4179.
  • Notkins A. L.. Polyreactivity of antibody molecules. Trends Immunol.. 2004; 25:174–179.
  • Chen C., Stenzel-Poore M. P., Rittenberg M. B.. Natural auto- and polyreactive antibodies differing from antigen-induced antibodies in the H chain CDR3. J. Immunol. 1991; 147:2359–2367.
  • Poncet P., Matthes T., Billecocq A., Dighiero G.. Immunochemical studies of polyspecific natural autoantibodies: charge, lipid reactivity, Fab’2 fragment activity and complement fixation. Mol. Immunol. 1988; 25:981.
  • Fernandez P.-A., Ternynck T., Avrameas S.. Immunochemical studies of a murine polyreactive IgG2b autoantibody with rheumatoid factor activity. Mol. Immunol. 1989; 26:539.
  • Bona C. A.. V genes encoding autoantibodies: molecular and phenotypic characteristics. Ann. Rev. Immunol. 1988; 6:327.
  • Baccala R., Quang T. V., Gilbert M., Ternynck T., Avrameas S.. Two murine natural polyreactive autoantibodies are encoded by nonmutated germline genes. Proc. Natl. Acad. Sci. USA. 1989; 86:4624.
  • Kofler R., Dixon F. J., Theofilopoulos A. N.. The genetic origin of autoantibodies. Immunol. Today. 1987; 8:374.
  • Hartman A. B., Mallett C. P., Srinivasappa J., . Organ reactive autoantibodies from non-immunized adult BALB/c mice are polyreactive and express non-biased VH gene usage. Mol. Immunol. 1989; 26:359–370.
  • Ichiyoshi Y., Casali P.. Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments. J. Exp. Med. 1994; 180:885–895.
  • Ichiyoshi Y., Casali P.. Analysis of the structural correlates for self-antigen binding by natural and disease-related autoantibodies. In vitro expression of recombinant and/or mutagenized human IgG. Ann N Y Acad Sci. 1995; 764:328–341.
  • Casali P., Schettino E. W.. Structure and function of natural antibodies. Curr. Top. Microbiol. Immunol. 1996; 210:167–179.
  • Martin T., Crouzier R., Weber J. C., Kipps T. J., Pasquali J. L.. Structure-function studies on a polyreactive [natural] autoantibody. Polyreactivity is dependent on somatically generated sequences in the third complementarity-determining region of the antibody heavy chain. J. Immunol. 1994; 152:5988–5996.
  • Deng Y. J., Notkins A. L.. Molecular determinants of polyreactive antibody binding: HCDR3 and cyclic peptides. Clin. Exp. Immunol. 2000; 119:69–76.
  • Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J.. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986; 233:747–753.
  • Segal D. M., Padlan E. A., Cohen G. H., . The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc. Natl. Acad. Sci. USA. 1974; 71:4298–4302.
  • Martin F., Kearney J. F.. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol. Rev. 2000; 175:7079.
  • Hayakawa K., Hardy R. R., Parks D. R., Herzenberg L. A.. The “Ly-1” B cell subpopulation in normal, immunodefective, and autoimmune mice. J. Exp. Med. 1983; 157:202–218.
  • Kantor A. B., Herzenberg A.. Origin of murine B cell lineages. Annu. Rev. Immunol. 1993; 11:501–538.
  • Baumgarth N.. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol.11:34–46.
  • Martin F., Kearney J. F.. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity. 2000; 12:39–49.
  • Pennell C. A., Arnold L. W., Haughton G., Clarke S. H.. Restricted Ig variable region gene expression among Ly-1+B cell hybridomas. J. Immunol. 1988; 141:2788–2796.
  • Tarlinton D., Stall A. M., Herzenberg L. A.. Repetitive usage of immunoglobulin VH and D gene segments in CD5+Ly-1 B clones of [NZB x NZW]F1 mice. EMBO J. 1988; 7:3705–3710.
  • Tornberg U. C., Holmberg D.. B-1a, B-1b and B-2 B cells display unique VHDJH repertoires formed at different stages of ontogeny and under different selection pressure. EMBO J. 1995; 14:1680–1689.
  • Kantor A. B., Merrill C. E., Herzenberg L. A., Hillson J. L.. An unbiased analysis of VH-D-JH sequences from B-1a, B-1b and conventional B cells. J. Immunol. 1997; 158:1175–1186.
  • Gu H., Forster I., Rajewsky K.. Sequence homologies, N sequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cells and B-CLL progenitor generation. EMBO J. 1990; 9:2133.
  • Zhou Z. H., Notkins A. L.. Polyreactive antigen-binding B [PAB-] cells are widely distributed and the PAB population consists of both B-1+and B-1-phenotypes. Clin. Exp. Immunol. 2004; 137:88–100.
  • Thurnheer M. C., Zuercher A. W., Cebra J. J., Bos N. A.. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J. Immunol. 2003; 170:4564–4571.
  • Nobrega A., Stransky B., Nicolas N., Coutinho A.. Regeneration of natural antibody repertoire after massive ablation of lymphoid system: robust selection mechanisms preserve antigen binding specificities. J. Immunol. 2002; 169:2971–2978.
  • Tian Q., Beardall M., Xu Y., . B cells expressing a natural polyreactive autoantibody have a distinct phenotype and are overrepresented in immunoglobulin heavy chain transgenic mice. J. Immunol. 2006; 177:2412–2422.
  • Hayakawa K., Asano M., Shinton S. A., . Positive selection of anti-thy-1 autoreactive B-1 cells and natural serum autoantibody production independent from bone marrow B cell development. J. Exp. Med. 2003; 197:87–99.
  • Baumgarth N., Herman O. C., Jager G. C., Herzenberg L. A., Herzenberg L. A.. Innate and acquired immunities to influenza virus are provided by distinct B cells. Proc. Natl. Acad. Sci. USA. 1999; 96:2250–2255.
  • Ochsenbein A. F., Fehr T., Lutz C.. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999; 286:2156–2159.
  • Baumgarth N., Herman O. C., Jager G. C., . B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 2000; 192:271–280.
  • Boes M., Prodeus A. P., Schmidt T., Carroll M. C., Chen J.. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 1998; 188:2380–2386.
  • Diamond M. S., Sitati E. M., Friend L. D., . A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 2003; 198:1853–1862.
  • Rajan B., Ramalingam T., Rajan T. V.. Critical role for IgM in host protection in experimental filarial infection. J Immunol. 2005; 175:1827–1833.
  • Zhou Z. H., Zhang Y., Hu Y. F., . The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe. 2007; 1:51–61.
  • Jayasekera J. P., Moseman E. A., Carroll M. C.. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol. 2007; 81:3487–3494.
  • Rapaka R. R., Ricks D. M., Alcorn J. F., . Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J. Exp. Med207:2907–2919.
  • Racine R., Winslow G. M.. IgM in microbial infections: taken for granted? Immunol. Lett. 2009; 125:79–85.
  • Boes M.. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 2000; 37:1141–1149.
  • Matejuk A., Beardall M., Xu Y., . Exclusion of natural autoantibody-producing B cells from IgG memory B cell compartment during T cell-dependent immune responses. J. Immunol. 2009; 182:7634–7643.
  • Chen C., Roberts V., Rittenberg M.. Generation and analysis of random point mutations in an antibody CDR2 sequence: many mutated antibodies lose their ability to bind antigen. J. Exp. Med. 1992; 176:855–866.
  • Chen C., Roberts V., Stevens S., . Enhancement and destruction of antibody function by somatic mutation: unequal occurrence is controlled by V gene combinatorial associations. EMBO J. 1995; 14:2784–2794.
  • Wiens G., Brown M., Rittenberg M.. Repertoire shift in the humoral response to phosphocholine-keyhole limpet hemocyanin: VH somatic mutation in germinal center B cells impairs T15 Ig function. J. Immunol. 2003; 170:5095–5102.
  • Chen C., Martin T., Stevens S., Rittenberg M.. Defective secretion of an immunoglobulin caused by mutations in the heavy chain complementarity determining region 2. J. Exp. Med. 1994; 180:577–586.
  • Xu Z., Pone E. J., Al-Qahtani A., . Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit. Rev. Immunol. 2007; 27:367–397.
  • McBride K. M., Gazumyan A., Woo E. M., . Regulation of class switch recombination and somatic mutation by AID phosphorylation. J. Exp. Med. 2008; 205:2585–2594.
  • Mannoor K., Matejuk A., Xu Y., Beardall M., Chen C.. Expression of natural autoantibodies in MRL-lpr mice protects from lupus nephritis and improves survival. J. Immunol188:3628–3638.
  • Qin X. F., Schwers S., Yu W., . Secondary V[D]J recombination in B1 cells. Nature. 1999; 397:355–359.
  • Yurasov S., Wardemann H., Hammersen J., . Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 2005; 201:703–711.
  • Samuels J., Ng Y., Coupillaud C., Paget D., Meffre E.. Impaired early B cell tolerance in patients with rheumatoid arthritis. J. Exp. Med. 2005; 201:1659–1667.
  • Cook W. D., Rudikoff S., Giusti A. M., . Antigen binding variants of the S107 mouse myeloma cell line. Prog. Clin. Biol. Res. 1980; 42:217–230.
  • Napastek Y., Andre-Schwartz J., Manser T., . A single germline VH gene segment of normal A/J mice encodes autoantibodies characteristic of systemic lupus erythematosus. J. Exp. Med. 1986; 164:614–626.
  • Ikematsu H., Kasaian M. T., Schettino E. W., Casali P.. Structural analysis of the VH-D-JH segments of human polyreactive IgG mAb. Evidence for somatic selection. J. Immunol. 1993; 151:3604–3616.
  • Boes M., Esau C., Fischer M. B., . Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 1998; 160:4776–4787.
  • Ehrenstein M. R., O'Keefe T. L., Davies S. L., Neuberger M. S.. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl. Acad. Sci. USA. 1998; 95:10089–10093.
  • Ehrenstein M. R., Cook H. T., Neuberger M. S.. Deficiency in serum immunoglobulin [Ig]M predisposes to development of IgG autoantibodies. J. Exp. Med. 2000; 191:1253–1258.
  • Boes M., Schmidt T., Linkemann K., . Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl. Acad. Sci. USA. 2000; 97:1184–1189.
  • Jiang C., Foley J., Clayton N., . Abrogation of lupus nephritis in activation-induced deaminase-deficient MRL/lpr mice. J. Immunol. 2007; 178:7422–7431.
  • Jiang C., Zhao M. L., Scearce R. M., Diaz M.. Activation-induced deaminase-deficient MRL/lpr mice secrete high levels of protective antibodies against lupus nephritis. Arthritis Rheum63:1086–1096.
  • Werwitzke S., Trick D., Kamino K., . Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the [NZB x NZW]F1 mouse. Arthritis Rheum. 2005; 52:3629–3638.
  • Chen Y., Khanna S., Goodyear C. S., . Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 2009; 183:1346–1359.
  • Witte T., Hartung K., Sachse C., . IgM anti-dsDNA antibodies in systemic lupus erythematosus: negative association with nephritis. SLE Study Group. Rheumatol. Int. 1998; 18:85–91.
  • Forger F., Matthias T., Oppermann M., Becker H., Helmke K.. Clinical significance of anti-dsDNA antibody isotypes: IgG/IgM ratio of anti-dsDNA antibodies as a prognostic marker for lupus nephritis. Lupus. 2004; 13:36–44.
  • Gronwall C., Akhter E., Oh C., . IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin. Immunol142:390–398.
  • Su J., Hua X., Concha H., . Natural antibodies against phosphorylcholine as potential protective factors in SLE. Rheumatology [Oxford]. 2008; 47:1144–1150.
  • Li Q. Z., Xie C., Wu T., . Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays. J. Clin. Invest. 2005; 115:3428–3439.
  • Neeli I., Richardson M. M., Khan S. N., . Divergent members of a single autoreactive B cell clone retain specificity for apoptotic blebs. Mol. Immunol. 2007; 44:1914–1921.
  • Casciola-Rosen L. A., Anhalt G., Rosen A.. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 1994; 179:1317–1330.
  • Cocca B. A., Cline A. M., Radic M. Z.. Blebs and apoptotic bodies are B cell autoantigens. J. Immunol. 2002; 169:159–166.
  • Kalaaji M., Fenton K. A., Mortensen E. S., . Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int. 2007; 71:664–672.
  • Botto M., Dell'Agnola C., Bygrave A. E., . Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 1998; 19:56–59.
  • Taylor P. R., Carugati A., Fadok V. A., . A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 2000; 192:359–366.
  • Gommerman J. L., Carroll M. C.. Negative selection of B lymphocytes: a novel role for innate immunity. Immunol. Rev. 2000; 173:120–130.
  • Scott R. S., McMahon E. J., Pop S. M., . Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature. 2001; 411:207–211.
  • Cline A. M., Radic M. Z.. Murine lupus autoantibodies identify distinct subsets of apoptotic bodies. Autoimmunity. 2004; 37:85–93.
  • Cline A. M., Radic M. Z.. Apoptosis, subcellular particles, and autoimmunity. Clin. Immunol. 2004; 112:175–182.
  • Radic M., Marion T., Monestier M.. Nucleosomes are exposed at the cell surface in apoptosis. J. Immunol. 2004; 172:6692–6700.
  • Quartier P., Potter P. K., Ehrenstein M. R., Walport M. J., Botto M.. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur. J. Immunol. 2005; 35:252–260.
  • Kim S. J., Gershov D., Ma X., Brot N., Elkon K. B.. I-PLA[2] activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med. 2002; 196:655–665.
  • Ogden C. A., Kowalewski R., Peng Y., Montenegro V., Elkon K. B.. IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity. 2005; 38:259–264.
  • Notley C. A., Brown M. A., Wright G. P., Ehrenstein M. R.. Natural IgM is required for suppression of inflammatory arthritis by apoptotic cells. J. Immunol. 2011; 186:4967–4972.
  • Chen Y., Park Y. B., Patel E., Silverman G. J.. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol. 2009; 182:6031–6043.
  • Melero J., Tarrago D., Nunez-Roldan A., Sanchez B.. Human polyreactive IgM monoclonal antibodies with blocking activity against self-reactive IgG. Scand. J. Immunol. 1997; 45:393–400.
  • Williams R. C.Jr, Malone C. C., Huffman G. R., . Active systemic lupus erythematosus is associated with depletion of the natural generic anti-idiotype [anti-F[ab’]2] system. J. Rheumatol. 1995; 22:1075–1085.
  • Rossi F., Dietrich G., Kazatchkine M. D.. Anti-idiotypes against autoantibodies in normal immunoglobulins: evidence for network regulation of human autoimmune responses. Immunol. Rev. 1989; 110:135–149.
  • Lanzavecchia A.. Antigen-specific interactions between T and B cells. Nature. 1985; 314:537.
  • Joao C., Ogle B. M., Gay-Rabinstein C., Platt J. L., Cascalho M.. B cell-dependent TCR diversification. J. Immunol. 2004; 172:4709–4716.
  • Tumanov A. V., Grivennikov S. I., Shakhov A. N., . Dissecting the role of lymphotoxin in lymphoid organs by conditional targeting. Immunol. Rev. 2003; 195:106–116.
  • Harris D. P., Haynes L., Sayles P. C., . Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 2000; 1:475–482.
  • Lund F. E.. Cytokine-producing B lymphocytes-key regulators of immunity. Curr. Opin. Immunol. 2008; 20:332–338.
  • Eynon E. E., Parker D. C.. Small B cells as antigen presenting cells in the induction of tolerance to soluble protein antigens. J. Exp. Med. 1992; 175:131.
  • Melo M. E., Qian J., El-Amine M., . Gene transfer of Ig-fusion proteins into B cells prevents and treats autoimmune diseases. J. Immunol. 2002; 168:4788–4795.
  • Dalai S. K., Mirshahidi S., Morrot A., Zavala F., Sadegh-Nasseri S.. Anergy in memory CD4+T cells is induced by B cells. J. Immunol. 2008; 181:3221–3231.
  • Frommer F., Heinen T. J., Wunderlich F. T., . Tolerance without clonal expansion: selfantigen-expressing B cells program self-reactive T cells for future deletion. J. Immunol. 2008; 181:5748–5759.
  • Notkins A. L.. Polyreactive antibodies and polyreactive antigen-binding B [PAB] Cells. Curr. Top. Microbiol. Immunol. 2000; 252:241–249.
  • Mizoguchi A., Bhan A. K.. A case for regulatory B cells. J Immunol. 2006; 176:705–710.
  • Mauri C., Ehrenstein M. R.. The ’short’ history of regulatory B cells. Trends Immunol. 2008; 29:34–40.
  • Fillatreau S., Gray D., Anderton S. M.. Not always the bad guys: B cells as regulators of autoimmune pathology. Nat. Rev. Immunol. 2008; 8:391–397.
  • Bouaziz J. D., Yanaba K., Tedder T. F.. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev. 2008; 224:201–214.
  • Jamin C., Morva A., Lemoine S., . Regulatory B lymphocytes in humans: a potential role in autoimmunity. Arthritis Rheum. 2008; 58:1900–1906.
  • Blair P. A., Norena L. Y., Flores-Borja F., . CD19[+]CD24[hi]CD38[hi] B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity32:129–140.
  • Wolf S. D., Dittel B. N., Hardardottir F., Janeway C. A.Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 1996; 184:2271–2278.
  • Fillatreau S., Sweenie C. H., McGeachy M. J., Gray D., Anderton S. M.. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 2002; 3:944–950.
  • Mizoguchi A., Mizoguchi E., Smith R. N., Preffer F. I., Bhan A. K.. Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J. Exp. Med. 1997; 186:1749–1756.
  • Wei B., Velazquez P., Turovskaya O., . Mesenteric B cells centrally inhibit CD4+T cell colitis through interaction with regulatory T cell subsets. Proc. Natl. Acad. Sci. USA. 2005; 102:2010–2015.
  • Mauri C., Gray D., Mushtaq N., Londei M.. Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med. 2003; 197:489–501.
  • Evans J. G., Chavez-Rueda K. A., Eddaoudi A., . Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 2007; 178:7868–7878.
  • Hussain S., Delovitch T. L.. Intravenous transfusion of BCR-activated B cells protects NOD mice from type 1 diabetes in an IL-10-dependent manner. J. Immunol. 2007; 179:7225–7232.
  • Blair P. A., Chavez-Rueda K. A., Evans J. G., . Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J. Immunol. 2009; 182:3492–3502.
  • Ho A. S., Moore K. W.. Interleukin-10 and its receptor. Ther. Immunol. 1994; 1:173–185.
  • Tian J., Zekzer D., Hanssen L., . Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 2001; 167:1081–1089.
  • Lampropoulou V., Hoehlig K., Roch T., . TLR-activated B cells suppress T cell-mediated autoimmunity. J. Immunol. 2008; 180:4763–4773.
  • Brummel R., Lenert P.. Activation of marginal zone B cells from lupus mice with type A[D] CpG-oligodeoxynucleotides. J. Immunol. 2005; 174:2429–2434.
  • Leadbetter E., Rifkin I., Hohlbaum A., . Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002; 416:603–607.
  • Viglianti G. A., Lau C. M., Hanley T. M., . Activation of autoreactive B cells by CpG dsDNA. Immunity. 2003; 19:837–847.
  • Chen X., Jensen P. E.. Cutting edge: primary B lymphocytes preferentially expand allogeneic FoxP3+CD4 T cells. J. Immunol. 2007; 179:2046–2050.
  • Kazatchkine M. D., Kaveri S. V.. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N. Engl. J. Med. 2001; 345:747–755.
  • Jordan S. C., Toyoda M., Vo A. A.. Intravenous immunoglobulin a natural regulator of immunity and inflammation. Transplantation. 2009; 88:1–6.
  • Hurez V., Kazatchkine M. D., Vassilev T., . Pooled normal human polyspecific IgM contains neutralizing anti-idiotypes to IgG autoantibodies of autoimmune patients and protects from experimental autoimmune disease. Blood. 1997; 90:4004–4013.
  • Rieben R., Roos A., Muizert Y., . Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood. 1999; 93:942–951.
  • Zander A. R., Zabelina T., Kroger N., . Use of a five-agent GVHD prevention regimen in recipients of unrelated donor marrow. Bone Marrow Transplant. 1999; 23:889–893.
  • Shoenfeld Y., Rauova L., Gilburd B., . Efficacy of IVIG affinity-purified anti-double-stranded DNA anti-idiotypic antibodies in the treatment of an experimental murine model of systemic lupus erythematosus. Int. Immunol. 2002; 14:1303–1311.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.