1,508
Views
86
CrossRef citations to date
0
Altmetric
Review Article

Regulation of Aicda expression and AID activity

&
Pages 83-101 | Received 07 Nov 2012, Accepted 09 Nov 2012, Published online: 17 Jan 2013

References

  • Xu Z., Zan H., Pone E. J., Mai T., Casali P.. Immunoglobulin class switching: induction, targeting and beyond. Nature Rev. Immunol.. 2012; 12:517–531.
  • Zan H., White C. A., Thomas L. M., . Rev1 recruits Ung to switch regions and enhances dU deglycosylation for immunoglobulin class switch DNA recombination. Cell Repts.. 2012; 2:1220–1232.
  • Marusawa H., Chiba T.. Helicobacter pylori-induced activation-induced cytidine deaminase expression and carcinogenesis. Curr. Opin. Immunol.. 2010; 22:442–447.
  • Marusawa H., Takai A., Chiba T.. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv. Immunol.. 2011; 111:109–141.
  • Xu Z., Pone E. J., Al-Qahtani A., . Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit. Rev. Immunol.. 2007; 27:367–397.
  • Stavnezer J.. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol.. 2011; 32:194–201.
  • Kuraoka M., Holl T. M., Liao D., . Activation-induced cytidine deaminase mediates central tolerance in B cells. Proc. Natl. Acad. Sci. USA. 2011; 108:11560–11565.
  • Meyers G., Ng Y. S., Bannock J. M., . Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc. Natl. Acad. Sci. USA. 2011; 108:11554–11559.
  • Pasqualucci L., Bhagat G., Jankovic M., . AID is required for germinal center-derived lymphomagenesis. Nat. Genet.. 2008; 40:108–112.
  • Robbiani D. F., Bunting S., Feldhahn N., . AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell. 2009; 36:631–641.
  • Hasham M. G., Donghia N. M., Coffey E., . Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat. Immunol.. 2010; 11:820–826.
  • Ramiro A. R., Jankovic M., Eisenreich T., . AID is required for c-Myc/IgH chromosome translocations in vivo. Cell. 2004; 118:431–438.
  • Robbiani D. F., Bothmer A., Callen E., . AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 2008; 135:1028–1038.
  • Delker R. K., Fugmann S. D., Papavasiliou F. N.. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat. Immunol.. 2009; 10:1147–1153.
  • Hasler J., Rada C., Neuberger M. S.. Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor 1α (eEF1A). Proc. Natl. Acad. Sci. USA. 2011; 108:18366–18371.
  • Aoufouchi S., Faili A., Zober C., . Proteasomal degradation restricts the nuclear lifespan of AID. J. Exp. Med.. 2008; 205:1357–1368.
  • Uchimura Y., Barton L. F., Rada C., Neuberger M. S.. REG-γ associates with and modulates the abundance of nuclear activation-induced deaminase. J. Exp. Med.. 2011; 208:2385–2891.
  • Li G., Pone E. J., Mai T., . Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination. J. Biol. Chem.. 2012; 287:21520–21529.
  • Shinkura R., Ito S., Begum N. A., . Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat. Immunol.. 2004; 5:707–712.
  • Pone E. J., Zhang J., Mai T., . BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway. Nat. Commun.. 2012; 3:767.
  • Bishop G. A., Hostager B. S.. The CD40-CD154 interaction in B cell-T cell liaisons. Cytokine Growth Factor Rev.. 2003; 14:297–309.
  • Graham J. P., Arcipowski K. M., Bishop G. A.. Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1. Immunol. Rev.. 2010; 237:226–248.
  • Rickert R. C., Jellusova J., Miletic A. V.. Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol. Rev.. 2011; 244:115–133.
  • Oeckinghaus A., Hayden M. S., Ghosh S.. Crosstalk in NF-κB signaling pathways. Nat. Immunol.. 2011; 12:695–708.
  • Sun S. C.. Non-canonical NF-κB signaling pathway. Cell Res.. 2011; 21:71–85.
  • Tran T. H., Nakata M., Suzuki K., . B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat. Immunol.. 2010; 11:148–154.
  • Cerutti A.. The regulation of IgA class switching. Nat. Rev. Immunol.. 2008; 8:421–434.
  • Fagarasan S., Kawamoto S., Kanagawa O., Suzuki K.. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol.. 2010; 28:243–273.
  • Cerutti A., Chen K., Chorny A.. Immunoglobulin responses at the mucosal interfaces. Annu. Rev. Immunol.. 2011; 29:273–293.
  • Bossen C., Schneider P.. BAFF, APRIL and their receptors: structure, function and signaling. Semin. Immunol.. 2006; 18:263–275.
  • Mackay F., Schneider P.. Cracking the BAFF code. Nat. Rev. Immunol.. 2009; 9:491–502.
  • He B., Qiao X., Cerutti A.. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J. Immunol.. 2004; 173:4479–4491.
  • Xu W., Santini P. A., Matthews A. J., . Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. J. Immunol.. 2008; 181:276–287.
  • He B., Santamaria R., Xu W., . The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat. Immunol.. 2010; 11:836–845.
  • Bombardieri M., Kam N. W., Brentano F., . A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann. Rheum. Dis.. 2011; 70:1857–1865.
  • Vos Q., Lees A., Wu Z. Q., Snapper C. M., Mond J. J.. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev.. 2000; 176:154–170.
  • Coutinho A., Poltorack A.. Innate immunity: from lymphocyte mitogens to Toll-like receptors and back. Curr. Opin. Immunol.. 2003; 15:599–602.
  • Pone E. J., Zan H., Zhang J., . Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit. Rev. Immunol.. 2010; 30:1–29.
  • Pone E. J., Xu Z., White C. A., Zan H., Casali P.. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front. Biosci.. 2012; 17:2594–2615.
  • Medzhitov R.. Recognition of microorganisms and activation of the immune response. Nature. 2007; 449:819–826.
  • Lee M. S., Kim Y. J.. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem.. 2007; 76:447–480.
  • Kawai T., Akira S.. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol.. 2009; 21:317–337.
  • Gururajan M., Jacob J., Pulendran B.. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS One. 2007; 2:e863.
  • Coutinho A., Moller G.. Thymus-independent B-cell induction and paralysis. Adv. Immunol.. 1975; 21:113–236.
  • Pike B. L., Alderson M. R., Nossal G. J.. T-independent activation of single B cells: an orderly analysis of overlapping stages in the activation pathway. Immunol. Rev.. 1987; 99:119–152.
  • Medzhitov R., Preston-Hurlburt P., Janeway C. A.Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388:394–397.
  • Poltorak A., He X., Smirnova I., . Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998; 282:2085–2088.
  • Poxton I. R.. Antibodies to lipopolysaccharide. J. Immunol. Meth.. 1995; 186:1–15.
  • Quintana F. J., Solomon A., Cohen I. R., Nussbaum G.. Induction of IgG3 to LPS via Toll-like receptor 4 co-stimulation. PLoS One. 2008; 3:e3509.
  • Chaturvedi A., Dorward D., Pierce S. K.. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity. 2008; 28:799–809.
  • Chaturvedi A., Pierce S. K.. How location governs Toll-like receptor signaling. Traffic. 2009; 10:621–628.
  • Gu X., Shivarov V., Strout M. P.. The role of activation-induced cytidine deaminase in lymphomagenesis. Curr. Opin. Hematol.. 2012; 19:292–298.
  • Sernández I. V., de Yébenes V. G., Dorsett Y., Ramiro A. R.. Haploinsufficiency of activation-induced deaminase for antibody diversification and chromosome translocations both in vitro and in vivo. PLoS One. 2008; 3:e3927.
  • Takizawa M., Tolarova H., Li Z., . AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. J. Exp. Med.. 2008; 205:1949–1957.
  • Zan H., Zhang J., Ardeshna S., . Lupus-prone MRL/Faslpr/lpr mice display increased AID expression and extensive DNA lesions, comprising deletions and insertions, in the immunoglobulin locus: concurrent up-regulation of somatic hypermutation and class switch DNA recombination. Autoimmunity. 2009; 42:89–103.
  • Rush J. S., Liu M., Odegard V. H., Unniraman S., Schatz D. G.. Expression of activation-induced cytidine deaminase is regulated by cell division, providing a mechanistic basis for division-linked class switch recombination. Proc. Natl. Acad. Sci. USA. 2005; 102:13242–13247.
  • Rawlings D. J., Schwartz M. A., Jackson S. W., Meyer-Bahlburg A.. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol.. 2012; 12:282–294.
  • Zarnegar B., He J. Q., Oganesyan G., . Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-κB activation pathways. Proc. Natl. Acad. Sci. USA. 2004; 101:8108–8113.
  • Park S. R., Zan H., Pal Z., . HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat. Immunol.. 2009; 10:540–550.
  • Smale S. T.. Hierarchies of NF-κB target-gene regulation. Nat. Immunol.. 2011; 12:689–694.
  • Baltimore D.. NF-κB is 25. Nat. Immunol.. 2011; 12:683–685.
  • Sayegh C. E., Quong M. W., Agata Y., Murre C.. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat. Immunol.. 2003; 4:586–593.
  • Ise W., Kohyama M., Schraml B. U., . The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat. Immunol.. 2011; 12:536–543.
  • Pritchard C. C., Cheng H. H., Tewari M.. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet.. 2012; 13:358–369.
  • Teng G., Hakimpour P., Landgraf P., . MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 2008; 28:621–629.
  • Dorsett Y., McBride K. M., Jankovic M., . MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-IgH translocation. Immunity. 2008; 28:630–638.
  • de Yébenes V. G., Belver L., Pisano D. G., . miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med.. 2008; 205:2199–2206.
  • Borchert G. M., Holton N. W., Larson E. D.. Repression of human activation induced cytidine deaminase by miR-93 and miR-155. BMC Cancer. 2011; 10:347.
  • Basso K., Schneider C., Shen Q., . Bc16 positively regulates AID and germinal center gene expression via repression of miR-155. J. Exp. Med.. 2012; 209:2455–2465.
  • Thai T. H., Calado D. P., Casola S., . Regulation of the germinal center response by microRNA-155. Science. 2007; 316:604–608.
  • Landgraf P., Rusu M., Sheridan R., . A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007; 129:1401–1414.
  • Kluiver J., van den Berg A., de Jong D., . Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene. 2007; 26:3769–3776.
  • Ito S., Nagaoka H., Shinkura R., . Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc. Natl. Acad. Sci. USA. 2004; 101:1975–1980.
  • Cattoretti G., Buttner M., Shaknovich R., . Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood. 2006; 107:3967–3975.
  • Pasqualucci L., Guglielmino R., Houldsworth J., . Expression of the AID protein in normal and neoplastic B cells. Blood. 2004; 104:3318–3325.
  • McBride K. M., Barreto V., Ramiro A. R., Stavropoulos P., Nussenzweig M. C.. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J. Exp. Med.. 2004; 199:1235–1244.
  • Brar S. S., Watson M., Diaz M.. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J. Biol. Chem.. 2004; 279:26395–26401.
  • Zaprazna K., Atchison M. L.. YY1 controls immunoglobulin class switch recombination and nuclear activation-induced deaminase levels. Mol. Cell. Biol.. 2012; 32:1542–1554.
  • Häsler J., Rada C., Neuberger M. S.. The cytoplasmic AID complex. Semin. Immunol.. 2012; 24:273–280.
  • Orthwein A., Patenaude A. M., Affar el B., . Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90. J. Exp. Med.. 2010; 207:2751–2765.
  • Orthwein A., Zahn A., Methot S. P., . Optimal functional levels of activation-induced deaminase specifically require the Hsp40 DnaJa1. EMBO J.. 2011; 31:679–691.
  • Chaudhuri J., Khuong C., Alt F. W.. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature. 2004; 430:992–998.
  • Basu U., Chaudhuri J., Alpert C., . The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature. 2005; 438:508–511.
  • McBride K. M., Gazumyan A., Woo E. M., . Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc. Natl. Acad. Sci. USA. 2006; 103:8798–8803.
  • Pasqualucci L., Kitaura Y., Gu H., Dalla-Favera R.. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc. Natl. Acad. Sci. USA. 2006; 103:395–400.
  • Ramiro A. R., Stavropoulos P., Jankovic M., Nussenzweig M. C.. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol.. 2003; 4:452–456.
  • Shinkura R., Tian M., Smith M., . The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol.. 2003; 4:435–441.
  • Yu K., Chedin F., Hsieh C. L., Wilson T. E., Lieber M. R.. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol.. 2003; 4:442–451.
  • Nambu Y., Sugai M., Gonda H., . Transcription-coupled events associating with immunoglobulin switch region chromatin. Science. 2003; 302:2137–2140.
  • Liu M., Duke J. L., Richter D. J., . Two levels of protection for the B cell genome during somatic hypermutation. Nature. 2008; 451:841–845.
  • Staszewski O., Baker R. E., Ucher A. J., . Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol. Cell. 2011; 41:232–242.
  • Klein I. A., Resch W., Jankovic M., . Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell. 2011; 147:95–106.
  • Chiarle R., Zhang Y., Frock R. L., . Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011; 147:107–119.
  • Xu Z., Fulop Z., Wu G., . 14-3-3 adaptor proteins recruit AID to 5′-AGCT-3′-rich switch regions for class switch recombination. Nature Struct. Mol. Biol.. 2010; 17:1124–1135.
  • Shen H. M., Poirier M. G., Allen M. J., . The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. J. Exp. Med.. 2009; 206:1057–1071.
  • Conticello S. G., Ganesh K., Xue K., . Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol. Cell. 2008; 31:474–484.
  • Pavri R., Gazumyan A., Jankovic M., . Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell. 2010; 143:122–133.
  • Maeda K., Singh S. K., Eda K., . GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. J. Biol. Chem.. 2010; 285:23945–23953.
  • Okazaki I. M., Okawa K., Kobayashi M., . Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation. Proc. Natl. Acad. Sci. USA. 2011; 108:7920–7925.
  • Nowak U., Matthews A. J., Zheng S., Chaudhuri J.. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nat. Immunol.. 2011; 12:160–166.
  • Basu U., Meng F. L., Keim C., . The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell. 2011; 144:353–363.
  • Stanlie A., Aida M., Muramatsu M., Honjo T., Begum N. A.. Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination. Proc. Natl. Acad. Sci. USA. 2010; 107:22190–22195.
  • Willmann K. L., Milosevic S., Pauklin S., . A role for the RNA pol II-associated PAF complex in AID-induced immune diversification. J. Exp. Med.. 2012; 209:2099–2111.
  • Yamane A., Resch W., Kuo N., . Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol.. 2011; 12:62–69.
  • Xue K., Rada C., Neuberger M. S.. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/-ung-/-mice. J. Exp. Med.. 2006; 203:2085–2094.
  • Tafvizi A., Huang F., Fersht A. R., Mirny L. A., van Oijen A. M.. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. USA. 2011; 108:563–568.
  • Wang L., Wuerffel R., Feldman S., Khamlichi A. A., Kenter A. L.. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J. Exp. Med.. 2009; 206:1817–1830.
  • Rajagopal D., Maul R. W., Ghosh A., . Immunoglobulin switch mu sequence causes RNA polymerase II accumulation and reduces dA hypermutation. J. Exp. Med.. 2009; 206:1237–1244.
  • Li, G., E. J. Pone, T. Mai, et al. 2012. Combinatorial H3K9acS10ph histone modifications target 14-3-3 adaptors and AID for class switch DNA recombination, Submitted.
  • Li G., Zan H., Xu Z., Casali P.. Epigenetics of the antibody response. Trends Immunol.. 2012 In press.
  • Jeevan-Raj B. P., Robert I., Heyer V., . Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J. Exp. Med.. 2011; 208:1649–1660.
  • Begum N. A., Stanlie A., Nakata M., Akiyama H., Honjo T.. The histone chaperone SPT6 is required for AID target determination through H3K4me3 regulation. J. Biol. Chem.. 2012; 287:32415–32429.
  • Fraenkel S., Mostoslavsky R., Novobrantseva T. I., . Allelic ‘choice’ governs somatic hypermutation in vivo at the immunoglobulin kappa-chain locus. Nat. Immunol.. 2007; 8:715–722.
  • Jolly C. J., Neuberger M. S.. Somatic hypermutation of immunoglobulin kappa transgenes: association of mutability with demethylation. Immunol. Cell Biol.. 2001; 79:18–22.
  • Larijani M., Frieder D., Sonbuchner T. M., . Methylation protects cytidines from AID-mediated deamination. Mol. Immunol.. 2005; 42:599–604.
  • Odegard V. H., Kim S. T., Anderson S. M., Shlomchik M. J., Schatz D. G.. Histone modifications associated with somatic hypermutation. Immunity. 2005; 23:101–110.
  • Borchert G. M., Holton N. W., Edwards K. A., Vogel L. A., Larson E. D.. Histone H2A and H2B are monoubiquitinated at AID-targeted loci. PLoS One. 2010; 5:e11641.
  • Vuong B. Q., Lee M., Kabir S., . Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat. Immunol.. 2009; 10:420–426.
  • Golenser J., Domb A., Mordechai-Daniel T., . Iron chelators: correlation between effects on Plasmodium spp. and immune functions. J. Parasitol.. 2006; 92:170–177.
  • Swingler S., Zhou J., Swingler C., . Evidence for a pathogenic determinant in HIV-1 Nef involved in B cell dysfunction in HIV/AIDS. Cell Host Microbe. 2008; 4:63–76.
  • Barton J. C., Bertoli L. F., Acton R. T.. Common variable immunodeficiency and IgG subclass deficiency in central Alabama hemochromatosis probands homozygous for HFE C282Y. Blood Cells Mol. Dis.. 2003; 31:102–111.
  • Watanabe-Matsui M., Muto A., Matsui T., . Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2. Blood. 2011; 117:5438–5448.
  • White C. A., Seth Hawkins J., Pone E. J., . AID dysregulation in lupus-prone MRL/Faslpr/lpr mice increases class switch DNA recombination and promotes interchromosomal c-Myc/IgH loci translocations: modulation by HoxC4. Autoimmunity. 2011; 44:585–598.
  • Hsu H. C., Wu Y., Yang P., . Overexpression of activation-induced cytidine deaminase in B cells is associated with production of highly pathogenic autoantibodies. J. Immunol.. 2007; 178:5357–5365.
  • Hsu H. C., Yang P., Wang J., . Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol.. 2008; 9:166–175.
  • Hsu H. C., Yang P., Wu Q., . Inhibition of the catalytic function of activation-induced cytidine deaminase promotes apoptosis of germinal center B cells in BXD2 mice. Arthritis Rheum.. 2011; 63:2038–2048.
  • Jiang C., Foley J., Clayton N., . Abrogation of lupus nephritis in activation-induced deaminase-deficient MRL/lpr mice. J. Immunol.. 2007; 178:7422–7431.
  • Jiang C., Zhao M. L., Diaz M.. Activation-induced deaminase heterozygous MRL/lpr mice are delayed in the production of high-affinity pathogenic antibodies and in the development of lupus nephritis. Immunology. 2009; 126:102–113.
  • Fish E. N.. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol.. 2008; 8:737–744.
  • Klein S. L.. Immune cells have sex and so should journal articles. Endocrinology. 2012; 153:2544–2550.
  • Ackerman L. S.. Sex hormones and the genesis of autoimmunity. Arch. Dermatol.. 2006; 142:371–376.
  • Pennock J. W., Stegall R., Bell B., . Estradiol improves genital herpes vaccine efficacy in mice. Vaccine. 2009; 27:5830–5836.
  • Whitacre C. C.. Sex differences in autoimmune disease. Nat. Immunol.. 2001; 2:777–780.
  • Klein S. L., Jedlicka A., Pekosz A.. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis.. 2010; 10:338–349.
  • Cohen-Solal J. F., Jeganathan V., Hill L., . Hormonal regulation of B-cell function and systemic lupus erythematosus. Lupus. 2008; 17:528–532.
  • Fairweather D., Frisancho-Kiss S., Rose N. R.. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol.. 2008; 173:600–609.
  • Cohen-Solal J. F., Jeganathan V., Grimaldi C. M., Peeva E., Diamond B.. Sex hormones and SLE: influencing the fate of autoreactive B cells. Curr. Top. Microbiol. Immunol.. 2006; 305:67–88.
  • Grimaldi C. M.. Sex and systemic lupus erythematosus: the role of the sex hormones estrogen and prolactin on the regulation of autoreactive B cells. Curr. Opin. Rheumatol.. 2006; 18:456–461.
  • Lee T. P., Chiang B. L.. Sex differences in spontaneous versus induced animal models of autoimmunity. Autoimmun. Rev.. 2012; 11:A422–A429.
  • Heldring N., Pike A., Andersson S., . Estrogen receptors: how do they signal and what are their targets. Physiol. Rev.. 2007; 87:905–931.
  • Pauklin S., Sernandez I. V., Bachmann G., Ramiro A. R., Petersen-Mahrt S. K.. Estrogen directly activates AID transcription and function. J. Exp. Med.. 2009; 206:99–111.
  • Mai T., Zan H., Zhang J., . Estrogen receptors bind to and activate the promoter of the HoxC4 gene to potentiate HoxC4-mediated AID induction, immunoglobulin class-switch DNA recombination and somatic hypermutation. J. Biol. Chem.. 2010; 285:37797–37810.
  • McInnes I. B., Schett G.. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med.. 2011; 365:2205–2219.
  • Xu X., Hsu H. C., Chen J., . Increased expression of activation-induced cytidine deaminase is associated with anti-CCP and rheumatoid factor in rheumatoid arthritis. Scand. J. Immunol.. 2009; 70:309–316.
  • Okazaki I. M., Hiai H., Kakazu N., . Constitutive expression of AID leads to tumorigenesis. J. Exp. Med.. 2003; 197:1173–1181.
  • Parsa J. Y., Basit W., Wang C. L., . AID mutates a non-immunoglobulin transgene independent of chromosomal position. Mol. Immunol.. 2007; 44:567–575.
  • Feldhahn N., Henke N., Melchior K., . Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J. Exp. Med.. 2007; 204:1157–1166.
  • Nagaoka H., Tran T. H., Kobayashi M., Aida M., Honjo T.. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int. Immunol.. 2010; 22:227–235.
  • Qin H., Suzuki K., Nakata M., . Activation-induced cytidine deaminase expression in CD4+T cells is associated with a unique IL-10-producing subset that increases with age. PLoS One. 2011; 6:e29141.
  • Rossi D., Berra E., Cerri M., . Aberrant somatic hypermutation in transformation of follicular lymphoma and chronic lymphocytic leukemia to diffuse large B-cell lymphoma. Haematologica. 2006; 91:1405–1409.
  • Casellas R., Yamane A., Kovalchuk A. L., Potter M.. Restricting activation-induced cytidine deaminase tumorigenic activity in B lymphocytes. Immunology. 2009; 126:316–328.
  • Klemm L., Duy C., Iacobucci I., . The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell. 2009; 16:232–245.
  • Strout M. P., Schatz D. G.. Imatinib resistance and progression of CML to blast crisis: somatic hypermutation AIDing the way. Cancer Cell. 2009; 16:174–176.
  • Pérez-Durán P., de Yebenes V. G., Ramiro A. R.. Oncogenic events triggered by AID, the adverse effect of antibody diversification. Carcinogenesis. 2007; 28:2427–2433.
  • Okazaki I. M., Kotani A., Honjo T.. Role of AID in tumorigenesis. Adv. Immunol.. 2007; 94:245–273.
  • Matsumoto Y., Marusawa H., Kinoshita K., . Up-regulation of activation-induced cytidine deaminase causes genetic aberrations at the CDKN2b-CDKN2a in gastric cancer. Gastroenterology. 2010; 139:1984–1994.
  • Endo Y., Marusawa H., Chiba T.. Involvement of activation-induced cytidine deaminase in the development of colitis-associated colorectal cancers. J. Gastroenterol.. 2011; 46 Suppl 1: 6–10.
  • Shinmura K., Igarashi H., Goto M., . Aberrant expression and mutationinducing activity of AID in human lung cancer. Ann. Surg. Oncol.. 2011; 18:2084–2092.
  • Babbage G., Ottensmeier C. H., Blaydes J., Stevenson F. K., Sahota S. S.. Immunoglobulin heavy chain locus events and expression of activation-induced cytidine deaminase in epithelial breast cancer cell lines. Cancer Res.. 2006; 66:99–111.
  • Macduff D. A., Neuberger M. S., Harris R. S.. MDM2 can interact with the C-terminus of AID but it is inessential for antibody diversification in DT40 B cells. Mol. Immunol.. 2006; 43:1099–1108.
  • Demorest Z. L., MacDuff D. A., Brown W. L., . The interaction between AID and CIB1 is nonessential for antibody gene diversification by gene conversion or class switch recombination. PLoS One. 2010; 5:e11660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.