309
Views
7
CrossRef citations to date
0
Altmetric
Research Papers

Mechanisms of CpG-induced CD40 expression on murine bone marrow-derived dendritic cells

, , , &
Pages 177-187 | Received 04 May 2012, Accepted 18 Nov 2012, Published online: 07 Feb 2013

References

  • Belz G. T., Nutt S. L.. Transcriptional programming of the dendritic cell network. Nat. Rev. Immunol.. 2012; 12:101–113.
  • Boudreau J. E., Bonehill A., Thielemans K., Wan Y.. Engineering dendritic cells to enhance cancer immunotherapy. Mol Ther.. 2011; 19:841–853.
  • Zhou Y., Zhang Y., Yao Z., Moorman J. P., Jia Z.. Dendritic cell-based immunity and vaccination against hepatitis C virus infection. Immunology. 2012; 136:385–396.
  • O'Sullivan B. J., Pai S., Street S., . Immunotherapy with costimulatory dendritic cells to control autoimmune inflammation. J. Immunol.. 2011; 187:4018–4030.
  • Zanoni I., Granucci F.. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity. 2011; 44:23–32.
  • Mathieu M., Cotta-Grand N., Daudelin J. F., . CD40-activated B cells can efficiently prime antigen-specific naive CD8+T cells to generate effector but not memory T cells. PLoS One. 2012; 7:e30139.
  • van Duivenvoorde L. M., van Mierlo G. J., Boonman Z. F., Toes R. E.. Dendritic cells: vehicles for tolerance induction and prevention of autoimmune diseases. Immunobiology. 2006; 211:627–632.
  • Ma D. Y., Clark E. A.. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol.. 2009; 21:265–272.
  • Rothoeft T., Balkow S., Krummen M., . Structure and duration of contact between dendritic cells and T cells are controlled by T cell activation state. Eur. J. Immunol.. 2006; 36:3105–3117.
  • Peters A. L., Stunz L. L., Bishop G. A.. CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol.. 2009; 21:293–300.
  • Ponomarev E. D., Shriver L. P., Dittel B. N.. CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J. Immunol.. 2006; 176:1402–1410.
  • Crispin J. C., Vargas-Rojas M. I., Monsivais-Urenda A., Alcocer-Varela J.. Phenotype and function of dendritic cells of patients with systemic lupus erythematosus. Clin. Immunol.. 2012; 143:45–50.
  • Qian Y., Giltiay N., Xiao J., . Deficiency of Act1, a critical modulator of B cell function, leads to development of Sjogren's syndrome. Eur. J. Immunol.. 2008; 38:2219–2228.
  • Ramgolam V. S., Sha Y., Marcus K. L., . B cells as a therapeutic target for IFN-beta in relapsing-remitting multiple sclerosis. J. Immunol.. 2011; 186:4518–4526.
  • Nakken B., Munthe L. A., Konttinen Y. T., . B-cells and their targeting in rheumatoid arthritis–current concepts and future perspectives. Autoimmun. Rev.. 2011; 11:28–34.
  • Toubi E., Shoenfeld Y.. The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity. 2004; 37:457–464.
  • Robak E., Robak T.. Novel and emerging drugs for systemic lupus erythematosus: mechanism of action and therapeutic activity. Curr. Med. Chem.. 2012; 19:438–453.
  • Li Y., Berke I. C., Modis Y.. DNA binding to proteolytically activated TLR9 is sequence-independent and enhanced by DNA curvature. EMBO J.. 2012; 31:919–931.
  • Miranda-Hernandez S., Gerlach N., Fletcher J. M., . Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis. J. Immunol.. 2011; 187:791–804.
  • Xie H., Hua C., Sun L., . 17beta-estradiol induces CD40 expression in dendritic cells via MAPK signaling pathways in a minichromosome maintenance protein 6-dependent manner. Arthritis Rheum.. 2011; 63:2425–2435.
  • Hua C., Yang Y., Sun L., . Chaetoglobosin F, a small molecule compound, possesses immunomodulatory properties on bone marrow-derived dendritic cells via TLR9 signaling pathway. Immunobiology. 2012.
  • Lam Q. L., Zheng B. J., Jin D. Y., Cao X., Lu L.. Leptin induces CD40 expression through the activation of Akt in murine dendritic cells. J. Biol. Chem.. 2007; 282:27587–27597.
  • Nakasa T., Shibuya H., Nagata Y., Niimoto T., Ochi M.. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum.. 2011; 63:1582–1590.
  • Su B., Karin M.. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr. Opin. Immunol.. 1996; 8:402–411.
  • Stanczyk J., Pedrioli D. M., Brentano F., . Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum.. 2008; 58:1001–1009.
  • Nakasa T., Miyaki S., Okubo A., . Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum.. 2008; 58:1284–1292.
  • Kawai T., Akira S.. TLR signaling. Cell Death Differ.. 2006; 13:816–825.
  • Suttles J., Stout R. D.. Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis. Semin. Immunol.. 2009; 21:257–264.
  • Suzuki M., Zheng X., Zhang X., . Inhibition of allergic responses by CD40 gene silencing. Allergy. 2009; 64:387–397.
  • Suzuki M., Zheng X., Zhang X., . A novel allergen-specific therapy for allergy using CD40-silenced dendritic cells. J Allergy Clin Immunol.. 2010; 125:737–743.
  • Qin H., Wilson C. A., Lee S. J., Zhao X., Benveniste E. N.. LPS induces CD40 gene expression through the activation of NF-kappaB and STAT-1alpha in macrophages and microglia. Blood. 2005; 106:3114–3122.
  • Nguyen V. T., Benveniste E. N.. Critical role of tumor necrosis factor-alpha and NF-kappa B in interferon-gamma -induced CD40 expression in microglia/macrophages. J. Biol. Chem.. 2002; 277:13796–13803.
  • Qin H., Wilson C. A., Lee S. J., Benveniste E. N.. IFN-beta-induced SOCS-1 negatively regulates CD40 gene expression in macrophages and microglia. FASEB J.. 2006; 20:985–987.
  • Benveniste E. N., Nguyen V. T., Wesemann D. R.. Molecular regulation of CD40 gene expression in macrophages and microglia. Brain Behav. Immun.. 2004; 18:7–12.
  • Shortman K., Liu Y. J.. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol.. 2002; 2:151–161.
  • Colonna M.. TLR pathways and IFN-regulatory factors: to each its own. Eur. J. Immunol.. 2007; 37:306–309.
  • Dowling D., Hamilton C. M., O'Neill S. M.. A comparative analysis of cytokine responses, cell surface marker expression and MAPKs in DCs matured with LPS compared with a panel of TLR ligands. Cytokine. 2008; 41:254–262.
  • Tanos T., Marinissen M. J., Leskow F. C., . Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. J. Biol. Chem.. 2005; 280:18842–18852.
  • Aggeli I. K., Gaitanaki C., Beis I.. Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced upregulation of heme oxygenase-1 mRNA in H9c2 cells. Cell Signal.. 2006; 18:1801–1812.
  • Chen G., Gulbranson D. R., Yu P., Hou Z., Thomson J. A.. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells. 2012; 30:623–630.
  • Honda K., Taniguchi T.. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol.. 2006; 6:644–658.
  • Krausgruber T., Saliba D., Ryzhakov G., . IRF5 is required for late-phase TNF secretion by human dendritic cells. Blood. 2010; 115:4421–4430.
  • Tsujimura H., Tamura T., Kong H. J., . Toll-like receptor 9 signaling activates NF-kappaB through IFN regulatory factor-8/IFN consensus sequence binding protein in dendritic cells. J. Immunol.. 2004; 172:6820–6827.
  • Mehta J., Genin A., Brunner M., . Prolonged expression of CD154 on CD4 T cells from pediatric lupus patients correlates with increased CD154 transcription, increased nuclear factor of activated T cell activity, and glomerulonephritis. Arthritis Rheum.. 2010; 62:2499–2509.
  • Willis R., Seif A. M., McGwin G.Jr., . Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: data from LUMINA (LXXV), a multiethnic US cohort. Lupus. 2012; 21:830–835.
  • Gayed M., Gordon C.. Novel treatments for systemic lupus erythematosus. Curr. Opin. Investig. Drugs. 2010; 11:1256–1264.
  • Tang Y., Luo X., Cui H., . MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum.. 2009; 60:1065–1075.
  • Gang Wang G., Tam L. S., Li E. K., . Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J. Rheumatol.. 2010; 37:2516–2522.
  • Paik J. H., Jang J. Y., Jeon Y. K., . MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin. Cancer Res.. 2011; 17:4761–4771.
  • Hou J., Wang P., Lin L., . MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol.. 2009; 183:2150–2158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.