445
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Somatic mutagenesis in autoimmunity

, , , , &
Pages 102-114 | Received 06 Dec 2012, Accepted 06 Dec 2012, Published online: 18 Jan 2013

References

  • Kotzin B. L.. Systemic lupus erythematosus. Cell. 1996; 85:303–306.
  • Theofilopoulos A. N., Dixon F. J.. Murine models of systemic lupus erythematosus. Adv. Immunol.. 1985; 37:269–390.
  • Flesher D. L., Sun X., Behrens T. W., Graham R. R., Criswell L. A.. Recent advances in the genetics of systemic lupus erythematosus. Expert Rev. Clin. Immunol.. 2010; 6:461–479.
  • Goodnow C. C.. Multistep pathogenesis of autoimmune disease. Cell. 2007; 130:25–35.
  • Wardemann H., Yurasov S., Schaefer A., Young J. W., Meffre E., Nussenzweig M. C.. Predominant autoantibody production by early human B cell precursors. Science. 2003; 301:1374–1377.
  • Gay D., Saunders T., Camper S., Weigert M.. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exper. Med.. 1993; 177:999–1008.
  • Yachimovich-Cohen N., Fischel R., Bachar N., Yarkoni Y., Eilat D.. Autoimmune NZB/NZW F1 mice utilize B cell receptor editing for generating high-affinity anti-dsDNA autoantibodies from low-affinity precursors. Euro. J. Immunol.. 2003; 33:2469–2478.
  • Li Y., Louzoun Y., Weigert M.. Editing anti-DNA B cells by Vlambdax. J. Exper. Med.. 2004; 199:337–346.
  • Halverson R., Torres R. M., Pelanda R.. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nature Immunol.. 2004; 5:645–650.
  • Benschop R. J., Aviszus K., Zhang X., Manser T., Cambier J. C., Wysocki L. J.. Activation and anergy in bone marrow B cells of a novel immunoglobulin transgenic mouse that is both hapten specific and autoreactive. Immunity. 2001; 14:33–43.
  • Tiegs S. L., Russell D. M., Nemazee D.. Receptor editing in self-reactive bone marrow B cells. J. Exper. Med.. 17719931009–1020.
  • Li H., Jiang Y., Prak E. L., Radic M., Weigert M.. Editors and editing of anti-DNA receptors. Immunity. 2001; 15:947–957.
  • Chen C., Li H., Tian Q., Beardall M., Xu Y., Casanova N., Weigert M.. Selection of anti-double-stranded DNA B cells in autoimmune MRL-lpr/lpr mice. J. Immunol.. 2006; 176:5183–5190.
  • Kat I., Makdasi E., Fischel R., Eilat D.. B-cell anergy is maintained in anti-DNA transgenic NZB/NZW mice. Intern. Immunol.. 2010; 22:101–111.
  • Fields M. L., Erikson J.. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Curr. Opin. Immunol.. 2003; 15:709–717.
  • Ota T., Ota M., Duong B. H., Gavin A. L., Nemazee D.. Liver-expressed Igκ superantigen induces tolerance of polyclonal B cells by clonal deletion not κto lambda receptor editing. J. Exper. Med.. 2011; 208:617–629.
  • Kench J. A., Russell D. M., Nemazee D.. Efficient peripheral clonal elimination of B lymphocytes in MRL/lpr mice bearing autoantibody transgenes. J. Exper. Med.. 1998; 188:909–917.
  • Hartley S. B., Crosbie J., Brink R., Kantor A. B., Basten A., Goodnow C. C.. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature. 1991; 353:765–769.
  • Rathmell J. C., Cooke M. P., Ho W. Y., Grein J., Townsend S. E., Davis M. M., Goodnow C. C.. CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+T cells. Nature. 1995; 376:181–184.
  • Gauld S. B., Benschop R. J., Merrell K. T., Cambier J. C.. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nature Immunol.. 2005; 6:1160–1167.
  • Steeves M. A., Marion T. N.. Tolerance to DNA in (NZB x NZW)F1 mice that inherit an anti-DNA V(H) as a conventional micro H chain transgene but not as a V(H) knock-in transgene. J. Immunol.. 2004; 172:6568–6577.
  • Sekiguchi D. R., Jainandunsing S. M., Fields M. L., Maldonado M. A., Madaio M. P., Erikson J., Weigert M., Eisenberg R. A.. Chronic graft-versus-host in Ig knockin transgenic mice abrogates B cell tolerance in anti-double-stranded DNA B cells. J. Immunol.. 2002; 168:4142–4153.
  • Brard F., Shannon M., Prak E. L., Litwin S., Weigert M.. Somatic mutation and light chain rearrangement generate autoimmunity in anti-single-stranded DNA transgenic MRL/lpr mice. J. Exper. Med.. 1999; 190:691–704.
  • Mandik-Nayak L., Seo S. J., Sokol C., Potts K. M., Bui A., Erikson J.. MRL-lpr/lpr mice exhibit a defect in maintaining developmental arrest and follicular exclusion of anti-double-stranded DNA B cells. J. Exper. Med.. 1999; 189:1799–1814.
  • Liu Y., Li L., Kumar K. R., Xie C., Lightfoot S., Zhou X. J., Kearney J. F., Weigert M., Mohan C.. Lupus susceptibility genes may breach tolerance to DNA by impairing receptor editing of nuclear antigen-reactive B cells. J. Immunol.. 2007; 179:1340–1352.
  • Mannoor K., Matejuk A., Xu Y., Beardall M., Chen C.. Expression of natural autoantibodies in MRL-lpr mice protects from lupus nephritis and improves survival. J. Immunol.. 2012; 188:3628–3638.
  • Jiang C., Foley J., Clayton N., Kissling G., Jokinen M., Herbert R., Diaz M.. Abrogation of lupus nephritis in activation-induced deaminase-deficient MRL/lpr mice. J. Immunol.. 2007; 178:7422–7431.
  • Jiang C., Zhao M. L., Scearce R. M., Diaz M.. Activation-induced deaminase-deficient MRL/lpr mice secrete high levels of protective antibodies against lupus nephritis. Arthritis Rheumat.. 2011; 63:1086–1096.
  • Boes M., Schmidt T., Linkemann K., Beaudette B. C., Marshak-Rothstein A., Chen J.. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl. Acad. Sci. USA. 2000; 97:1184–1189.
  • Werwitzke S., Trick D., Kamino K., Matthias T., Kniesch K., Schlegelberger B., Schmidt R. E., Witte T.. Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the (NZB x NZW)F1 mouse. Arthritis Rheumat.. 2005; 52:3629–3638.
  • Liang Z., Chen C., Mohan C.. Molecular signatures of anti-nuclear antibodies: contributions of specific light chain residues and a novel New Zealand Black V kappa 1 germline gene. J. Immunol.. 2003; 171:3886–3894.
  • Mietzner B., Tsuiji M., Scheid J., Velinzon K., Tiller T., Abraham K., Gonzalez J. B., Pascual V., Stichweh D., Wardemann H., Nussenzweig M. C.. Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. Proc. Natl. Acad. Sci. USA. 2008; 105:9727–9732.
  • Zhang J., Jacobi A. M., Wang T., Diamond B.. Pathogenic autoantibodies in systemic lupus erythematosus are derived from both self-reactive and non-self-reactive B cells. Mol. Med.. 2008; 14:675–681.
  • Wellmann U., Letz M., Herrmann M., Angermuller S., Kalden J. R., Winkler T. H.. The evolution of human anti-double-stranded DNA autoantibodies. Proc. Natl. Acad. Sci. USA. 2005; 102:9258–9263.
  • Gilfillan S., Dierich A., Lemeur M., Benoist C., Mathis D.. Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science. 1993; 261:1175–1178.
  • Guo W., Smith D., Aviszus K., Detanico T., Heiser R. A., Wysocki L. J.. Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity. J. Exp. Med.. 2010; 207:2225–2237.
  • Vyse T. J., Rozzo S. J., Drake C. G., Izui S., Kotzin B. L.. Control of multiple autoantibodies linked with a lupus nephritis susceptibility locus in New Zealand black mice. J. Immunol.. 1997; 158:5566–5574.
  • Tsao B. P., Cantor R. M., Kalunian K. C., Chen C. J., Badsha H., Singh R., Wallace D. J., Kitridou R. C., Chen S. L., Shen N., Song Y. W., Isenberg D. A., Yu C. L., Hahn B. H., Rotter J. I.. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J. Clin. Invest.. 1997; 99:725–731.
  • Molano I. D., Redmond S., Sekine H., Zhang X. K., Reilly C., Hutchison F., Ruiz P., Gilkeson G. S.. Effect of genetic deficiency of terminal deoxynucleotidyl transferase on autoantibody production and renal disease in MRL/lpr mice. Clin. Immunol.. 2003; 107:186–197.
  • Feeney A. J., Lawson B. R., Kono D. H., Theofilopoulos A. N.. Terminal deoxynucleotidyl transferase deficiency decreases autoimmune disease in MRL-Fas(lpr) mice. J. Immunol.. 2001; 167:3486–3493.
  • Shlomchik M. J., Madaio M. P., Ni D., Trounstein M., Huszar D.. The role of B cells in lpr/lpr-induced autoimmunity. J. Exper. Med.. 1994; 180:1295–1306.
  • Conde C., Weller S., Gilfillan S., Marcellin L., Martin T., Pasquali J. L.. Terminal deoxynucleotidyl transferase deficiency reduces the incidence of autoimmune nephritis in (New Zealand Black x New Zealand White)F1 mice. J. Immunol.. 1998; 161:7023–7030.
  • Guth A. M., Zhang X., Smith D., Detanico T., Wysocki L. J.. Chromatin specificity of anti-double-stranded DNA antibodies and a role for Arg residues in the third complementarity-determining region of the heavy chain. J. Immunol.. 2003; 171:6260–6266.
  • Krishnan M. R., Jou N. T., Marion T. N.. Correlation between the amino acid position of arginine in VH-CDR3 and specificity for native DNA among autoimmune antibodies. J. Immunol.. 1996; 157:2430–2439.
  • Li Z., Schettino E. W., Padlan E. A., Ikematsu H., Casali P.. Structure-function analysis of a lupus anti-DNA autoantibody: Central role of the heavy chain complementarity-determining region 3 Arg in binding of double- and single-stranded DNA. Euro. J. Immunol.. 2000; 30:2015–2026.
  • Smith D. S., Creadon G., Jena P. K., Portanova J. P., Kotzin B. L., Wysocki L. J.. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J. Immunol.. 1996; 156:2642–2652.
  • Radic M. Z., Weigert M.. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Ann. Rev. Immunol.. 1994; 12:487–520.
  • Shlomchik M. J., Aucoin A. H., Pisetsky D. S., Weigert M. G.. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc. Natl. Acad. Sci. USA. 1987; 84:9150–9154.
  • Shlomchik M., Mascelli M., Shan H., Radic M. Z., Pisetsky D., Marshak-Rothstein A., Weigert M.. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J. Exper. Med.. 1990; 171:265–292.
  • Connolly K., Roubinian J. R., Wofsy D.. Development of murine lupus in CD4-depleted NZB/NZW mice. Sustained inhibition of residual CD4+T cells is required to suppress autoimmunity. J. Immunol.. 1992; 149:3083–3088.
  • Peng S. L., Cappadona J., McNiff J. M., Madaio M. P., Owen M. J., Hayday A. C., Craft J.. Pathogenesis of autoimmunity in alphabeta T cell-deficient lupus-prone mice. Clin. Exper. Immunol.. 1998; 111:107–116.
  • Peng S. L., Madaio M. P., Hughes D. P., Crispe I. N., Owen M. J., Wen L., Hayday A. C., Craft J.. Murine lupus in the absence of alpha beta T cells. J. Immunol.. 1996; 156:4041–4049.
  • Herlands R. A., Christensen S. R., Sweet R. A., Hershberg U., Shlomchik M. J.. T cell-independent and toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity. 2008; 29:249–260.
  • Sweet R. A., Ols M. L., Cullen J. L., Milam A. V., Yagita H., Shlomchik M. J.. Facultative role for T cells in extrafollicular Toll-like receptor-dependent autoreactive B-cell responses in vivo. Proc. Natl. Acad. Sci. USA. 2011; 108:7932–7937.
  • Mohan C., Adams S., Stanik V., Datta S. K.. Nucleosome: A major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exper. Med.. 1993; 177:1367–1381.
  • Kaliyaperumal A., Mohan C., Wu W., Datta S. K.. Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J. Exper. Med.. 1996; 183:2459–2469.
  • Shi Y., Kaliyaperumal A., Lu L., Southwood S., Sette A., Michaels M. A., Datta S. K.. Promiscuous presentation and recognition of nucleosomal autoepitopes in lupus: Role of autoimmune T cell receptor alpha chain. J. Exper. Med.. 1998; 187:367–378.
  • Michaels M. A., Kang H. K., Kaliyaperumal A., Satyaraj E., Shi Y., Datta S. K.. A defect in deletion of nucleosome-specific autoimmune T cells in lupus-prone thymus: Role of thymic dendritic cells. J. Immunol.. 2005; 175:5857–5865.
  • Singh R. R., Kumar V., Ebling F. M., Southwood S., Sette A., Sercarz E. E., Hahn B. H.. T cell determinants from autoantibodies to DNA can upregulate autoimmunity in murine systemic lupus erythematosus. J. Exper. Med.. 1995; 181:2017–2027.
  • Hahn B. H., Singh R. R., Tsao B. P., Ebling F. M.. Peptides from Vh regions of antibodies to DNA activate T cell help to upregulate autoantibody synthesis. Lupus. 1997; 6:330–332.
  • Weiss S., Bogen B.. B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells. Proc. Natl. Acad. Sci. USA. 1989; 86:282–286.
  • Bartnes K., Hannestad K.. Engagement of the B lymphocyte antigen receptor induces presentation of intrinsic immunoglobulin peptides on major histocompatibility complex class II molecules. Euro. J. Immunol.. 1997; 27:1124–1130.
  • Snyder C. M., Zhang X., Wysocki L. J.. Negligible class II MHC presentation of B cell receptor-derived peptides by high density resting B cells. J. Immunol.. 2002; 168:3865–3873.
  • Rudensky A. Y., Yurin V. L.. Immunoglobulin-specific T-B cell interaction. I. Presentation of self immunoglobulin determinants by B lymphocytes. Euro. J. Immunol.. 1989; 19:1677–1683.
  • Holmoy T., Fredriksen A. B., Thompson K. M., Hestvik A. L., Bogen B., Vartdal F.. Cerebrospinal fluid T cell clones from patients with multiple sclerosis: recognition of idiotopes on monoclonal IgG secreted by autologous cerebrospinal fluid B cells. Euro. J. Immunol.. 2005; 35:1786–1794.
  • Hestvik A. L., Vartdal F., Fredriksen A. B., Thompson K. M., Kvale E. O., Skorstad G., Bogen B., Holmoy T.. T cells from multiple sclerosis patients recognize multiple epitopes on Self-IgG. Scand. J. Immunol.. 2007; 66:393–401.
  • Detanico T., Heiser R. A., Aviszus K., Bonorino C., Wysocki L. J.. Self-tolerance checkpoints in CD4 T cells specific for a peptide derived from the B cell antigen receptor. J. Immunol.. 2011; 187:82–91.
  • Eyerman M. C., Zhang X., Wysocki L. J.. T cell recognition and tolerance of antibody diversity. J. Immunol.. 1996; 157:1037–1046.
  • Guo W., Smith D., Guth A., Aviszus K., Wysocki L. J.. T cell tolerance to germline-encoded antibody sequences in a lupus-prone mouse. J. Immunol.. 2005; 175:2184–2190.
  • Bogen B., Jorgensen T., Hannestad K.. T helper cell recognition of idiotopes on lambda 2 light chains of M315 and T952: evidence for dependence on somatic mutations in the third hypervariable region. Euro. J. Immunol.. 1985; 15:278–281.
  • Eyerman M. C., Wysocki L.. T cell recognition of somatically-generated Ab diversity. J. Immunol.. 1994; 152:1569–1577.
  • Zhang X., Smith D. S., Guth A., Wysocki L. J.. A receptor presentation hypothesis for T cell help that recruits autoreactive B cells. J. Immunol.. 2001; 166:1562–1571.
  • Munthe L. A., Os A., Zangani M., Bogen B.. MHC-restricted Ig V region-driven T-B lymphocyte collaboration: B cell receptor ligation facilitates switch to IgG production. J. Immunol.. 2004; 172:7476–7484.
  • Snyder C. M., Aviszus K., Heiser R. A., Tonkin D. R., Guth A. M., Wysocki L. J.. Activation and tolerance in CD4(+) T cells reactive to an immunoglobulin variable region. J. Exper. Med.. 2004; 200:1–11.
  • Vyse T. J., Kotzin B. L.. Genetic susceptibility to systemic lupus erythematosus. Ann. Rev. Immunol.. 1998; 16:261–292.
  • Wakeland E. K., Liu K., Graham R. R., Behrens T. W.. Delineating the genetic basis of systemic lupus erythematosus. Immunity. 2001; 15:397–408.
  • Fairhurst A. M., Wandstrat A. E., Wakeland E. K.. Systemic lupus erythematosus: Multiple immunological phenotypes in a complex genetic disease. Adv. Immunol.. 2006; 92:1–69.
  • Watanabe-Fukunaga R., Brannan C. I., Copeland N. G., Jenkins N. A., Nagata S.. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992; 356:314–317.
  • Suzuki A., Kaisho T., Ohishi M., Tsukio-Yamaguchi M., Tsubata T., Koni P. A., Sasaki T., Mak T. W., Nakano T.. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J. Exp. Med.. 2003; 197:657–667.
  • O'Keefe T. L., Williams G. T., Batista F. D., Neuberger M. S.. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med.. 1999; 189:1307–1313.
  • Burnet F. M.. 1972. Autoimmunity and Autoimmune Disease. Lancaster, UK: Medical and Technical Publishing Co. Ltd.
  • Holzelova E., Vonarbourg C., Stolzenberg M. C., Arkwright P. D., Selz F., Prieur A. M., Blanche S., Bartunkova J., Vilmer E., Fischer A., Le Deist F., Rieux-Laucat F.. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N. Engl. J. Med.. 2004; 351:1409–1418.
  • Oliveira J. B., Bidere N., Niemela J. E., Zheng L., Sakai K., Nix C. P., Danner R. L., Barb J., Munson P. J., Puck J. M., Dale J., Straus S. E., Fleisher T. A., Lenardo M. J.. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc. Natl. Acad. Sci. USA. 2007; 104:8953–8958.
  • Takagi M., Shinoda K., Piao J., Mitsuiki N., Matsuda K., Muramatsu H., Doisaki S., Nagasawa M., Morio T., Kasahara Y., Koike K., Kojima S., Takao A., Mizutani S.. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood. 2011; 117:2887–2890.
  • Niemela J. E., Lu L., Fleisher T. A., Davis J., Caminha I., Natter M., Beer L. A., Dowdell K. C., Pittaluga S., Raffeld M., Rao V. K., Oliveira J. B.. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011; 117:2883–2886.
  • Hao Z., Hampel B., Yagita H., Rajewsky K.. T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J. Exp. Med.. 2004; 199:1355–1365.
  • Hao Z., Duncan G. S., Seagal J., Su Y. W., Hong C., Haight J., Chen N. J., Elia A., Wakeham A., Li W. Y., Liepa J., Wood G. A., Casola S., Rajewsky K., Mak T. W.. Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity. 2008; 29:615–627.
  • Stranges P. B., Watson J., Cooper C. J., Choisy-Rossi C. M., Stonebraker A. C., Beighton R. A., Hartig H., Sundberg J. P., Servick S., Kaufmann G., Fink P. J., Chervonsky A. V.. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity. 2007; 26:629–641.
  • Fukuyama H., Adachi M., Suematsu S., Miwa K., Suda T., Yoshida N., Nagata S.. Requirement of Fas expression in B cells for tolerance induction. Eur. J. Immunol.. 2002; 32:223–230.
  • Fukuyama H., Adachi M., Suematsu S., Miwa K., Suda T., Yoshida N., Nagata S.. Transgenic expression of Fas in T cells blocks lymphoproliferation but not autoimmune disease in MRL-lpr mice. J. Immunol.. 1998; 160:3805–3811.
  • Komano H., Ikegami Y., Yokoyama M., Suzuki R., Yonehara S., Yamasaki Y., Shinohara N.. Severe impairment of B cell function in lpr/lpr mice expressing transgenic Fas selectively on B cells. Int. Immunol.. 1999; 11:1035–1042.
  • Cuda C. M., Agrawal H., Misharin A. V., Haines G. K.3rd, Hutcheson J., Weber E., Schoenfeldt J. A., Mohan C., Pope R. M., Perlman H.. Requirement of myeloid cell-specific Fas expression for prevention of systemic autoimmunity in mice. Arthritis Rheumat.. 2012; 64:808–820.
  • Maher E. R., Yates J. R., Ferguson-Smith M. A.. Statistical analysis of the two stage mutation model in von Hippel-Lindau disease, and in sporadic cerebellar haemangioblastoma and renal cell carcinoma. J. Med. Genet.. 1990; 27:311–314.
  • Chompret A., Brugieres L., Ronsin M., Gardes M., Dessarps-Freichey F., Abel A., Hua D., Ligot L., Dondon M. G., Bressac-de Paillerets B., Frebourg T., Lemerle J., Bonaiti-Pellie C., Feunteun J.. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br. J. Cancer. 2000; 82:1932–1937.
  • Knudson A. G.Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA. 1971; 68:820–823.
  • Eng C.. PTEN: one gene, many syndromes. Hum. Mutat.. 2003; 22:183–198.
  • Jachez B., Montecino-Rodriguez E., Fonteneau P., Loor F.. Partial expression of the lpr locus in the heterozygous state: presence of autoantibodies. Immunol.. 1988; 64:31–36.
  • Mastache E. F., Lindroth K., Fernandez C., Gonzalez-Fernandez A.. Somatic hypermutation of Ig genes is affected differently by failures in apoptosis caused by disruption of Fas (lpr mutation) or by overexpression of Bcl-2. Scand. J. Immunol.. 2006; 63:420–429.
  • Takahashi Y., Ohta H., Takemori T.. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity. 2001; 14:181–192.
  • Di Cristofano A., Kotsi P., Peng Y. F., Cordon-Cardo C., Elkon K. B., Pandolfi P. P.. Impaired Fas response and autoimmunity in Pten+/ − mice. Science. 1999; 285:2122–2125.
  • Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G.. The role of clonal selection and somatic mutation in autoimmunity. Nature. 1987; 328:805–811.
  • Blier P. R., Bothwell A.. A limited number of B cell lineages generates the heterogeneity of a secondary immune response. J. Immunol.. 1987; 139:3996–4006.
  • Pleasance E. D., Stephens P. J., O'Meara S., McBride D. J., Meynert A., Jones D., Lin M. L., Beare D., Lau K. W., Greenman C., Varela I., Nik-Zainal S., Davies H. R., Ordonez G. R., Mudie L. J., Latimer C., Edkins S., Stebbings L., Chen L., Jia M., Leroy C., Marshall J., Menzies A., Butler A., Teague J. W., Mangion J., Sun Y. A., McLaughlin S. F., Peckham H. E., Tsung E. F., Costa G. L., Lee C. C., Minna J. D., Gazdar A., Birney E., Rhodes M. D., McKernan K. J., Stratton M. R., Futreal P. A., Campbell P. J.. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010; 463:184–190.
  • Lee W., Jiang Z., Liu J., Haverty P. M., Guan Y., Stinson J., Yue P., Zhang Y., Pant K. P., Bhatt D., Ha C., Johnson S., Kennemer M. I., Mohan S., Nazarenko I., Watanabe C., Sparks A. B., Shames D. S., Gentleman R., de Sauvage F. J., Stern H., Pandita A., Ballinger D. G., Drmanac R., Modrusan Z., Seshagiri S., Zhang Z.. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature. 2010; 465:473–477.
  • Pleasance E. D., Cheetham R. K., Stephens P. J.. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455:1061–1068.
  • Jones S., Zhang X., Parsons D. W., Lin J. C., Leary R. J., Angenendt P., Mankoo P., Carter H., Kamiyama H., Jimeno A., Hong S. M., Fu B., Lin M. T., Calhoun E. S., Kamiyama M., Walter K., Nikolskaya T., Nikolsky Y., Hartigan J., Smith D. R., Hidalgo M., Leach S. D., Klein A. P., Jaffee E. M., Goggins M., Maitra A., Iacobuzio-Donahue C., Eshleman J. R., Kern S. E., Hruban R. H., Karchin R., Papadopoulos N., Parmigiani G., Vogelstein B., Velculescu V. E., Kinzler K. W.. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008; 321:1801–1806.
  • Parsons D. W., Jones S., Zhang X., Lin J. C., Leary R. J., Angenendt P., Mankoo P., Carter H., Siu I. M., Gallia G. L., Olivi A., McLendon R., Rasheed B. A., Keir S., Nikolskaya T., Nikolsky Y., Busam D. A., Tekleab H., Diaz L. A.Jr, Hartigan J., Smith D. R., Strausberg R. L., Marie S. K., Shinjo S. M., Yan H., Riggins G. J., Bigner D. D., Karchin R., Papadopoulos N., Parmigiani G., Vogelstein B., Velculescu V. E., Kinzler K. W.. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008; 321:1807–1812.
  • Stratton M. R., Campbell P. J., Futreal P. A.. The cancer genome. Nature. 2009; 458:719–724.
  • Hanahan D., Weinberg R. A.. The hallmarks of cancer. Cell. 2000; 100:57–70.
  • Cairns J.. Mutation selection and the natural history of cancer. Nature. 1975; 15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.