185
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Functional characterization of the Thr946Ala SNP at the type 1 diabetes IFIH1 locus

, , &
Pages 40-45 | Received 12 Apr 2013, Accepted 04 Aug 2013, Published online: 14 Oct 2013

References

  • Smyth, D. J., J. D. Cooper, R. Bailey, et al. 2006. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 38:617–619
  • Martinez, A., J. L. Santiago, M. C. Cenit, et al. 2008. IFIH1-GCA-KCNH7 locus: influence on multiple sclerosis risk. Euro. J. Human Genet. EJHG 16:861–864
  • Martinez, A., J. Varade, J. R. Lamas, et al. 2008. Association of the IFIH1-GCA-KCNH7 chromosomal region with rheumatoid arthritis. Ann. Rheum. Dis. 67:137–138
  • Cunninghame Graham, D. S., D. L. Morris, T. R. Bhangale, et al. 2011. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 7:e1002341
  • Sutherland, A., J. Davies, C. J. Owen, et al. 2007. Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves' disease susceptibility. J. Clin. Endocrinol. Metab. 92:3338–3341
  • Concannon, P., S. Onengut-Gumuscu, J. A. Todd, et al. 2008. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes 57:2858–2861
  • Liu, S., H. Wang, Y. Jin, R. Podolsky, et al. 2009. IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum. Mol. Genet. 18:358–365
  • Nejentsev, S., N. Walker, D. Riches, et al. 2009. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389
  • Qu, H. Q., L. Marchand, R. Grabs, and C. Polychronakos. 2008. The association between the IFIH1 locus and type 1 diabetes. Diabetologia 51:473–475
  • Todd, J. A., N. M. Walker, J. D. Cooper, et al. 2007. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39:857–864
  • Ng, P. C., and S. Henikoff. 2003. SIFT: predicting amino acid changes that affect protein function. Nucl. Acids Res. 31:3812–3814
  • Sunyaev, S., V. Ramensky, I. Koch, et al. 2001. Prediction of deleterious human alleles. Hum. Mol. Genet. 10:591–597
  • Kang, D. C., R. V. Gopalkrishnan, Q. Wu, et al. 2002. mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. USA 99:637–642
  • Kang, D. C., R. V. Gopalkrishnan, L. Lin, et al. 2004. Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene. Oncogene 23:1789–1800
  • Yoneyama, M., M. Kikuchi, K. Matsumoto, et al. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175:2851–2858
  • Honda, K., H. Yanai, H. Negishi, et al. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777
  • Barral, P. M., J. M. Morrison, J. Drahos, et al. 2007. MDA-5 is cleaved in poliovirus-infected cells. J. Virol. 81:3677–3684
  • Kato, H., O. Takeuchi, S. Sato, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105
  • Gitlin, L., W. Barchet, S. Gilfillan, et al. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103:8459–8464
  • Loo, Y. M., J. Fornek, N. Crochet, et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82: 335–345
  • Devendra, D., and G. S. Eisenbarth. 2004. Interferon alpha – a potential link in the pathogenesis of viral-induced type 1 diabetes and autoimmunity. Clin. Immunol. 111: 225–233
  • Devendra, D., J. Jasinski, E. Melanitou, et al. 2005. Interferon-alpha as a mediator of polyinosinic:polycytidylic acid-induced type 1 diabetes. Diabetes 54: 2549–2556
  • Moriyama, H., L. Wen, N. Abiru, et al. 2002. Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc. Natl. Acad. Sci. USA 99: 5539–5544
  • Sobel, D. O., J. Newsome, C. H. Ewel, et al. 1992. Poly I:C induces development of diabetes mellitus in BB rat. Diabetes 41: 515–520
  • Nakamura, N., Y. Tsutsumi, S. Kimata, et al. 1991. Induction of diabetes by PolyI:C and anti-RT6.1 antibody treatment in DR-BB rats. Endocrinol. Jpn. 38: 523–526
  • Varela-Calvino, R., and M. Peakman. 2003. Enteroviruses and type 1 diabetes. Diabetes Metab. Res. Rev. 19: 431–441
  • Hyoty, H., and K. W. Taylor. 2002. The role of viruses in human diabetes. Diabetologia 45: 1353–1361
  • Roivainen, M. 2006. Enteroviruses: new findings on the role of enteroviruses in type 1 diabetes. Int. J. Biochem. Cell Biol. 38: 721–725
  • van der Werf, N., F. G. Kroese, J. Rozing, and J. L. Hillebrands. 2007. Viral infections as potential triggers of type 1 diabetes. Diabetes Metab. Res. Rev. 23: 169–183
  • Ylipaasto, P., K. Klingel, A. M. Lindberg, et al. 2004. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47: 225–239
  • Schulte, B. M., J. Bakkers, K. H. Lanke, et al. 2010. Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection. Viral Immunol. 23: 99–104
  • Gamble, D. R., M. L. Kinsley, M. G. FitzGerald, et al. 1969. Viral antibodies in diabetes mellitus. Br. Med. J. 3:627–630
  • Richardson, S. J., A. Willcox, A. J. Bone, et al. 2009. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52: 1143–1151
  • Dotta, F., S. Censini, A. G. van Halteren, et al. 2007. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl. Acad. Sci. USA 104: 5115–5120
  • Shigemoto, T., M. Kageyama, R. Hirai, et al. 2009. Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J. Biol. Chem. 284:13348–13354
  • Downes, K., M. Pekalski, K. L. Angus, et al. 2010. Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS One 5:e12646
  • Chistiakov, D. A., N. V. Voronova, K. V. Savost'Anov, and R. I. Turakulov. 2010. Loss-of-function mutations E6 27X and I923V of IFIH1 are associated with lower poly(I:C)-induced interferon-beta production in peripheral blood mononuclear cells of type 1 diabetes patients. Hum. Immunol. 71:1128–1134
  • Zouk, H., L. Marchand, and C. Polychronakos. 2010. Study of transcriptional effects in Cis at the IFIH1 locus. PLoS One 5:e11564
  • Dixon, A. L., L. Liang, M. F. Moffatt, et al. 2007. A genome-wide association study of global gene expression. Nat. Genet. 39:1202–1207
  • Robinson, T., S. N. Kariuki, B. S. Franek, et al. 2011. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients. J. Immunol. 187:1298–1303
  • The International HapMap Consortium. 2003. The International HapMap Project. Nature 426:789–796
  • Kato, H., O. Takeuchi, E. Mikamo-Satoh, et al. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205:1601–1610
  • Takahasi, K., M. Yoneyama, T. Nishihori, et al. 2008. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol. Cell 29:428–440
  • The 1000 Genomes Project Consortium. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–1073
  • Nam, H. Y., S. M. Shim, B. G. Han, and J. P. Jeon. 2011. Human lymphoblastoid cell lines: a goldmine for the biobankomics era. Pharmacogenomics 12: 907–917
  • Shukla, S. J., and M. E. Dolan. 2005. Use of CEPH and non-CEPH lymphoblast cell lines in pharmacogenetic studies. Pharmacogenomics 6: 303–310
  • Fumagalli, M., R. Cagliani, S. Riva, et al. 2010. Population genetics of IFIH1: ancient population structure, local selection, and implications for susceptibility to type 1 diabetes. Mol. Biol. Evol. 27:2555–2566

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.