624
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Metabolic control of the epigenome in systemic Lupus erythematosus

&
Pages 256-264 | Received 12 Jul 2013, Accepted 10 Aug 2013, Published online: 16 Oct 2013

References

  • Kyttaris V. C., and G. C. Tsokos. 2004. T lymphocytes in systemic lupus erythematosus: an update. Curr. Opin. Rheumatol. 16: 548–552
  • Anolik J., and I. Sanz. 2004. B cells in human and murine systemic lupus erythematosus. Curr. Opin. Rheumatol. 16: 505–512
  • Nagy G., A. Koncz, and A. Perl. 2005. T- and B-cell abnormalities in systemic lupus erythematosus. Crit. Rev. Immunol. 25: 123–140
  • Pascual V., J. Banchereau, and A. K. Palucka. 2003. The central role of dendritic cells and interferon-alpha in SLE. Curr. Opin. Rheumatol. 15: 548–556
  • Crispin J. C., and J. Alcocer-Varela. 2007. The role myeloid dendritic cells play in the pathogenesis of systemic lupus erythematosus. Autoimmun. Rev. 6: 450–456
  • Rao T., and B. Richardson. 1999. Environmentally induced autoimmune diseases: potential mechanisms. Environ. Health Perspect. 107: 737–742
  • Manderson A. P., M. Botto, and M. J. Walport. 2004. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol. 22: 431–456
  • Gateva V., J. K. Sandling, G. Hom, et al. 2009. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41: 1228–1233
  • Nagy G., J. Ward, D. D. Mosser, et al. 2006. Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection. J. Biol. Chem. 281: 34574–34591
  • Vaughn S. E., L. C. Kottyan, M. E. Munroe, and J. B. Harley. 2012. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J. Leukoc. Biol. 92: 577--591
  • Flesher D. L., X. Sun, T. W. Behrens, et al. 2010. Recent advances in the genetics of systemic lupus erythematosus. Expert Rev. Clin. Immunol. 6: 461–479
  • Richardson B. 2003. DNA methylation and autoimmune disease. Clin. Immunol. 109: 72–79
  • Patel DR, and B. C. Richardson. 2010. Epigenetic mechanisms in lupus. Curr. Opin. Rheumatol. 22: 478–482
  • Richardson B. 2007. Primer: epigenetics of autoimmunity. Nat. Clin. Pract. Rheumatol. 3: 521–527
  • Brooks W. H., C. Le Dantec, J. O. Pers, et al. 2010. Epigenetics and autoimmunity. J. Autoimmun. 34: J207–J219
  • Zouali M. Epigenetics in lupus. 2011. Ann. N. Y. Acad. Sci. 1217: 154–165
  • Richardson B., L. Scheinbart, J. Strahler, et al. 1990. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33: 1665–1673
  • Zhang Y., M. Zhao, A. H. Sawalha, et al. 2013. Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J. Autoimmun. 41: 92–99
  • Coit P., M. Jeffries, N. Altorok, et al. 2013. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 43: 78–84
  • Kaelin W. G.Jr, and S. L. McKnight. 2013. Influence of metabolism on epigenetics and disease. Cell. 153: 56–69
  • Lu C., and C. B. Thompson. 2012. Metabolic regulation of epigenetics. Cell. Metab. 16: 9–17
  • Ray P. D., B. W. Huang, and Y. Tsuji. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24: 981–990
  • Ulrey C. L., L. Liu, L. G. Andrews, and T. O. Tollefsbol. 2005. The impact of metabolism on DNA methylation. Hum. Mol. Genet. 14: R139–R147
  • Perl A. 2012. Oxidative stress and endosome recycling are complementary mechanisms reorganizing the T-cell receptor signaling complex in SLE. Clin. Immunol. 142: 219–222
  • Goswami S. K. 2012. Cellular redox, epigenetics and diseases. Subcell. Biochem. 61: 527–542
  • Adam-Vizi V. 2005. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid. Redox Signal. 7: 1140–1149
  • Perl A., R. Hanczko, and E. Doherty. 2012. Assessment of mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol. Biol. 900: 61–89
  • Corvetta A., R. Della Bitta, M. M. Luchetti, and G. Pomponio. 1991. 5-methylcytosine content of DNA in blood, synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases. J. Chromatogr. 566: 481–491
  • Lu S. C., L. Alvarez, Z. Z. Huang, et al. 2001. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc. Natl. Acad. Sci. USA. 98: 5560–5565
  • Avila M. A., F. J. Corrales, F. Ruiz, et al. 1998. Specific interaction of methionine adenosyltransferase with free radicals. Biofactors. 8:27–32
  • Selhub J., and J. W. Miller. 1992. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am. J. Clin. Nutr. 55: 131–138
  • Sipka S. 2011. Adenosine inhibits the release of arachidonic acid in activated human peripheral mononuclear cells. A proposed model for physiologic and pathologic regulation in systemic lupus erythematosus. Scientific World J. 11: 972–980
  • Dawson H., G. Collins, R. Pyle, et al. 2004. The immunoregulatory effects of homocysteine and its intermediates on T-lymphocyte function. Mech. Ageing Dev. 125: 107–110
  • do Prado R., V. M. D'Almeida, E. Guerra-Shinohara, et al. 2006. Increased concentration of plasma homocysteine in children with systemic lupus erythematosus. Clin. Exp. Rheumatol. 24: 594–598
  • Svedruzic Z. M., and N. O. Reich. 2005. DNA cytosine C5 methyltransferase Dnmt1: catalysis-dependent release of allosteric inhibition. Biochemistry. 44: 9472–9485
  • Deng C., M. J. Kaplan, J. Yang, et al. 2001. Decreased ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum. 44: 397–407
  • Perl A. 2010. Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity. 43: 1–6
  • Deng C, J. Yang, J. Scott, et al. 1998. Role of the ras-MAPK signaling pathway in the DNA methyltransferase response to DNA hypomethylation. Biol. Chem. 379: 1113–1120
  • Gorelik G., J. Y. Fang, A. Wu, et al. 2007. Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J. Immunol. 179: 5553–5563
  • Januchowski R., M. Wudarski, H. Chwalinska-Sadowska, and P. P. Jagodzinski. 2008. Prevalence of ZAP-70, LAT, SLP-76, and DNA methyltransferase 1 expression in CD4+ T cells of patients with systemic lupus erythematosus. Clin. Rheumatol. 27: 21–27
  • Gorelik G. J., S. Yarlagadda, and B. C. Richardson. 2012. Protein kinase cdelta oxidation contributes to ERK inactivation in lupus T cells. Arthritis Rheum. 64: 2964–2974
  • Cornacchia E., J. Golbus, J. Maybaum, et al. 1988. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 140: 2197–2200
  • Li-Weber M., M. K. Treiber, M. Giaisi, et al. 2005. Ultraviolet irradiation suppresses T cell activation via blocking TCR-mediated ERK and NF-kappa B signaling pathways. J. Immunol. 175: 2132–2143
  • Belot, A., P. R. Kasher, E. W. Trotter, et al. 2013. Protein kinase C delta deficiency causes mendelian systemic lupus erythematosus with B-cell defective apoptosis and hyperproliferation. Arthritis Rheum. 65: 2161--2171
  • Mazari L., M. Ouarzane, and M. Zouali. 2007. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc. Natl. Acad. Sci. USA. 104: 6317–6322
  • Franchini D. M., K. M. Schmitz, and S. K. Petersen-Mahrt. 2012. 5-methylcytosine DNA demethylation: more than losing a methyl group. Annu. Rev. Genet. 46: 419–441
  • Zan H., and P. Casali. 2013. Regulation of aicda expression and AID activity. Autoimmunity. 46: 83–101
  • Garcia-Manteiga J. M., S. Mari, Godejohann M., et al. 2011. Metabolomics of B to plasma cell differentiation. J. Proteome Res. 10: 4165–4176
  • Wu T., C. Xie, J. Han, et al. 2012. Metabolic disturbances associated with systemic lupus erythematosus. PLoS One. 7: e37210
  • Hoffman D. R., D. W. Marion, W. E. Cornatzer, and J. A. Duerre. 1980. S-adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. effects of l-methionine, l-homocystein, and adenosine. J. Biol. Chem. 255: 10822–10827
  • Yi P., S. Melnyk, M. Pogribna, et al. 2000. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J. Biol. Chem. 275: 29318–29323
  • Lertratanangkoon K., C. J. Wu, N. Savaraj, and M. L. Thomas. 1997. Alterations of DNA methylation by glutathione depletion. Cancer Lett. 120: 149–156
  • Poirier L. A., C. K. Wise, R. R. Delongchamp, and R. Sinha. 2001. Blood determinations of S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine: correlations with diet. Cancer. Epidemiol. Biomarkers Prev. 10: 649–655
  • Kim Y. I. 2005. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J. Nutr. 135: 2703–2709
  • Feil R., and M. F. Fraga. 2012. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13: 97–109
  • Kimura M., K. Umegaki, M. Higuchi, et al. 2004. Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J. Nutr. 134: 48–56
  • Huck S., and M. Zouali. 1996. DNA methylation: a potential pathway to abnormal autoreactive lupus B cells. Clin. Immunol. Immunopathol. 80: 1–8
  • Huck S., E. Deveaud, A. Namane, and M. Zouali. 1999. Abnormal DNA methylation and deoxycytosine-deoxyguanine content in nucleosomes from lymphocytes undergoing apoptosis. FASEB J. 13: 1415–1422
  • He Y. F., B. Z. Li, Z. Li, et al. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 333: 1303–1307
  • Ito S., L. Shen, Q. Dai, et al. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 333: 1300–1303
  • Bruniquel D., and R. H. Schwartz. 2003. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 4: 235–240
  • Krishna P., M. J. Fritzler, and J. H. Van de Sande. 1993. Interactions of anti-DNA antibodies with Z-DNA. Clin. Exp. Immunol. 92: 51–57
  • Puri H., R. A. Campbell, V. Puri-Harner, et al. 1978. Serum-free polyamines in children with systemic lupus erythematosus. Vol 2. New York: Raven Press. p. 359–367
  • Thomas T. J., J. R. Seibold, L. E. Adams, and E. V. Hess. 1993. Hydralazine induces Z-DNA conformation in a polynucleotide and elicits anti(Z-DNA) antibodies in treated patients. Biochem. J. 294: 419–425
  • Ahmad N., A. C. Gilliam, S. K. Katiyar, et al. 2001. A definitive role of ornithine decarboxylase in photocarcinogenesis. Am. J. Pathol. 159: 885–892
  • Hobbs C. A., and S. K. Gilmour. 2000. High levels of intracellular polyamines promote histone acetyltransferase activity resulting in chromatin hyperacetylation. J. Cell. Biochem. 77: 345–360
  • Hobbs C. A., B. A. Paul, and S. K. Gilmour. 2002. Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res. 62: 67–74
  • Upadhyay A. K., and X. Cheng. 2011. Dynamics of histone lysine methylation: structures of methyl writers and erasers. Prog. Drug Res. 67: 107–124
  • Barski A., S. Cuddapah, K. Cui, et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell. 129: 823–837
  • Zhang X., Z. Yang, S. I. Khan, et al. 2003. Structural basis for the product specificity of histone lysine methyltransferases. Mol. Cell. 12: 177–185
  • Rauen T., A. P. Grammatikos, C. M. Hedrich, et al. 2012. cAMP-responsive element modulator alpha (CREMalpha) contributes to decreased notch-1 expression in T cells from patients with active systemic lupus erythematosus (SLE). J. Biol. Chem. 287: 42525–42532
  • Zhang Q., H. Long, J. Liao, et al. 2011. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J. Autoimmun. 37: 180–189
  • Perillo B., M. N. Ombra, A. Bertoni, et al. 2008. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 319: 202–206
  • Hino S., A. Sakamoto, K. Nagaoka, et al. 2012. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 3: 758
  • Letouze E., C. Martinelli, C. Loriot, et al. 2013. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 23: 739–752
  • Chervona Y., and M. Costa. 2012. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic. Biol. Med. 53: 1041–1047
  • Mimura I., M. Nangaku, Y. Kanki, et al. 2012. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol. Cell. Biol. 32: 3018–3032
  • Hudson C. C., M. Liu, G. G. Chiang, et al. 2002. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22: 7004–7014
  • Lee D. Y., J. J. Hayes, D. Pruss, and A. P. Wolffe. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 72: 73–84
  • Forster N., S. Gallinat, J. Jablonska, et al. 2007. P300 protein acetyltransferase activity suppresses systemic lupus erythematosus-like autoimmune disease in mice. J. Immunol. 178: 6941–6948
  • Cai L., B. M. Sutter, B. Li, and B. P. Tu. 2011. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell. 42: 426–437
  • Takahashi H., J. M. McCaffery, R. A. Irizarry, and J. D. Boeke. 2006. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell. 23: 207–217
  • Grassian A. R., C. M. Metallo, J. L. Coloff, et al. 2011. Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev. 25: 1716--1733
  • Wahl D. R., B. Petersen, R. Warner, et al. 2010. Characterization of the metabolic phenotype of chronically activated lymphocytes. Lupus. 19: 1492–1501
  • Ma L., Z. Chen, H. Erdjument-Bromage, et al. 2005. Phosphorylation and functional inactivation of TSC2 by erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 121: 179–193
  • Perl A. 2010. Systems biology of lupus: mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity. 43: 32–47
  • Osoata G. O., S. Yamamura, M. Ito, et al. 2009. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem. Biophys. Res. Commun. 384: 366–371
  • Yang S. R., A. S. Chida, M. R. Bauter, et al. 2006. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 291: L46–L57
  • Reilly C. M., N. Regna, and N. Mishra. 2011. HDAC inhibition in lupus models. Mol. Med. 17: 417–425
  • Veech R. L., L. V. Eggleston, and H. A. Krebs. 1969. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J. 115: 609–619
  • Lin S. J., and L. Guarente. 2003. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr. Opin. Cell. Biol. 15: 241–246
  • Widner B., N. Sepp, E. Kowald, et al. 1999. Degradation of tryptophan in patients with systemic lupus erythematosus. Adv. Exp. Med. Biol. 467: 571–577
  • Widner B., N. Sepp, E. Kowald, et al. 2000. Enhanced tryptophan degradation in systemic lupus erythematosus. Immunobiology. 201: 621–630
  • Yamamori T., J. DeRicco, A. Naqvi, et al. 2010. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 38: 832–845
  • Hu N., X. Qiu, Y. Luo, et al. 2008. Abnormal histone modification patterns in lupus CD4+ T cells. J. Rheumatol. 35: 804–810
  • Hu N., H. Long, M. Zhao, et al. 2009. Aberrant expression pattern of histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice. Scand. J. Rheumatol. 38: 464–471
  • Mishra N., C. M. Reilly, D. R. Brown, et al. 2003. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111: 539–552
  • Zhang Z., L. Song, K. Maurer, et al. 2010. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun. 11: 124–133
  • Lee J. Y., N. A. Kim, A. Sanford, and K. E. Sullivan. 2003. Histone acetylation and chromatin conformation are regulated separately at the TNF-alpha promoter in monocytes and macrophages. J. Leukoc. Biol. 73: 862–871
  • Phillips R., R. Lomnitzer, A. A. Wadee, and A. R. Rabson. 1985. Defective monocyte function in patients with systemic lupus erythematosus. Clin. Immunol. Immunopathol. 34: 69–76
  • Banerjee T., and D. Chakravarti. 2011. A peek into the complex realm of histone phosphorylation. Mol. Cell. Biol. 31: 4858–4873
  • Tato I., R. Bartrons, F. Ventura, and J. L. Rosa. 2011. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/akt signaling. J. Biol. Chem. 286: 6128–6142
  • Bungard D., B. J. Fuerth, P. Y. Zeng, et al. 2010. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science. 329: 1201–1205
  • Gergely P. Jr, C. Grossman, B. Niland, et al. 2002. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46: 175–190
  • Griffey R. H., M. S. Brown, A. D. Bankhurst, et al. 1990. Depletion of high-energy phosphates in the central nervous system of patients with systemic lupus erythematosus, as determined by phosphorus-31 nuclear magnetic resonance spectroscopy. Arthritis Rheum. 33: 827–833
  • Fernandez D. R., T. Telarico, E. Bonilla, et al. 2009. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J. Immunol. 182: 2063–2073
  • Cline S. D., J. N. Riggins, S. Tornaletti, et al. 2004. Malondialdehyde adducts in DNA arrest transcription by T7 RNA polymerase and mammalian RNA polymerase II. Proc. Natl. Acad. Sci. USA. 101: 7275–7280
  • Marnett L. J. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424: 83–95
  • Doyle K., and F. A. Fitzpatrick. 2010. Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function. J. Biol. Chem. 285: 17417–17424
  • Li Y., M. Zhao, H. Yin, et al. 2010. Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum. 62: 1438–1447
  • Barreto G., A. Schafer, J. Marhold, et al. 2007. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 445: 671–675
  • Fujiki R., W. Hashiba, H. Sekine, et al. 2011. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 480: 557–560
  • Deplus R., B. Delatte, M. K. Schwinn, et al. 2013. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 32: 645–655
  • Chen Q., Y. Chen, C. Bian, et al. 2013. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 493: 561–564
  • Tsokos G. C., M. P. Nambiar, and Y. T. Juang. 2003. Activation of the ets transcription factor elf-1 requires phosphorylation and glycosylation: defective expression of activated elf-1 is involved in the decreased TCR zeta chain gene expression in patients with systemic lupus erythematosus. Ann. N. Y. Acad. Sci. 987: 240–245
  • Guppy M., E. Greiner, and K. Brand. 1993. The role of the crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur. J. Biochem. 212: 95–99
  • Brand K. A., and U. Hermfisse. 1997. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J. 11: 388–395
  • Yuan M, S. B. Breitkopf, X. Yang, and J. M. Asara. 2012. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7: 872–881
  • Lemasters J. J. 2007. Modulation of mitochondrial membrane permeability in pathogenesis, autophagy and control of metabolism. J. Gastroenterol. Hepatol. 2: S31–S37
  • Allen T. D., J. M. Cronshaw, S. Bagley, et al. 2000. The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J. Cell. Sci. 113: 1651–1659

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.