448
Views
27
CrossRef citations to date
0
Altmetric
Review Article

Epigenetic dysregulation in systemic lupus erythematosus

&
Pages 215-219 | Received 25 Jul 2013, Accepted 10 Sep 2013, Published online: 16 Oct 2013

References

  • Fraga, M. F., E. Ballestar, M. F. Paz, et al. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA. 102: 10604–10649
  • Javierre, B. M., A. F. Fernandez, J. Richter, et al. 2010. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20: 170–179
  • Zouali, M. 2011. Epigenetics in lupus. Ann. N. Y. Acad. Sci. 1217: 154–165
  • Jönsen A., A. A. Bengtsson, O. Nived, et al. 2007. Gene–environment interactions in the aetiology of systemic lupus erythematosus. Autoimmunity. 40: 613–617
  • Sawalha, A. H. 2008. Epigenetics and T-cell immunity. Autoimmunity. 41: 245–252
  • Kuchen S., C. A. Seemayer, J. Rethage, et al. 2004. The L1 retroelement-related p40 protein induces p38δ MAP kinase. Autoimmunity. 37: 57–65
  • Yung, R. L., and A. Julius. 2008. Epigenetics, aging, and autoimmunity. Autoimmunity. 41: 329–335
  • Ballestar, E., M. Esteller, and B. C. Richardson. 2006. The epigenetic face of systemic lupus erythematosus. J. Immunol. 176: 7143–7147
  • Costenbader, K. H., S. Gay, M. E. Alarcón-Riquelme, et al. 2012. Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun. Rev. 11: 604–609
  • Hedrich, C. M., T. Rauen, and G. C. Tsokos. 2011. cAMP-responsive element modulator (CREM)α protein signaling mediates epigenetic remodeling of the human interleukin-2 gene: implications in systemic lupus erythematosus. J. Biol. Chem. 286: 43429–43436
  • Amarilyo, G., and A. La Cava. 2012. miRNA in systemic lupus erythematosus. Clin. Immunol. 144: 26–31
  • Richardson, B. C. 2008. Epigenetics and autoimmunity. Autoimmunity. 41: 243–244
  • Yang, M.-L., A. Gee, R. J. Gee, et al. 2013. Lupus autoimmunity altered by cellular methylation metabolism. Autoimmunity. 46: 21–31
  • Lu, Q., A. Wu, and B. C. Richardson. 2005. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J. Immunol. 174: 6212–6219
  • Fernandez, M., A. Olek, Walter J, and J. Sanchez. 1998. Analysis of DNA methylation processes related to the inhibition of DNA synthesis by 5-azacytidine in Streptomyces antibioticus ETH 7451. Biol. Chem. 379: 559–562
  • Wang, Y., C. Liu, Q. L. Guo, et al. 2011. Intrathecal 5-azacytidine inhibits global DNA methylation and methyl- CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury. Brain Res. 1418: 64–69
  • Scheinbart, L. S., M. A. Johnson, L. A. Gross, et al. 1991. Procainamide inhibits DNA methyltransferase in a human T cell line. J. Rheumatol. 18: 530–534
  • Deng, C., Q. Lu, Z. Zhang, et al. 2003. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum. 48: 746–756
  • Gorelik, G., J. Y. Fang, A. Wu, et al. 2007. Impaired T cell protein kinase C δ activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J. Immunol. 179: 5553–5563
  • Quddus, J., K. J. Johnson, J. Gavalchin, et al. 1993. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 92: 38–53
  • Yung, R., D. Powers, K. Johnson, et al. 1996. Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 97: 2866–2871
  • Richardson, B., L. Scheinbart, J. Strahler, et al. 1990. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33: 1665–1673
  • Jeffries, M. A., M. Dozmorov, Y. Tang, et al. 2011. Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics. 6: 593–601
  • Deng, C., M. J. Kaplan, J. Yang, et al. 2001. Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum. 44: 397–407
  • Takeuchi, T., K. Amano, H. Sekine, et al. 1993. Upregulated expression and function of integrin adhesive receptors in systemic lupus erythematosus patients with vasculitis. J. Clin. Invest. 92: 3008–3016
  • Kaplan, M. J., Q. Lu, A. Wu, et al. 2004. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J. Immunol. 172: 3652–3661
  • Lu, Q., A. Wu, L. Tesmer, et al. 2007. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179: 6352–6358
  • Barreto, G., A. Schäfer, J. Marhold, et al. 2007. Gadd45α promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 445: 671–675
  • Li, Y., M. Zhao, H. Yin, et al. 2010. Overexpression of the growth arrest and DNA damage-induced 45α gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum. 62: 1438–1447
  • Garaud, S., P. Youinou, and Y. Renaudineau. 2011. DNA methylation and B-cell autoreactivity. Adv. Exp. Med. Biol. 711: 50–60
  • Youinou, P., and Y. Renaudineau. 2011. CD5 expression in B cells from patients with systemic lupus erythematosus. Crit. Rev. Immunol. 31: 31–42
  • Fischle, W., Y. Wang, and C. D. Allis. 2003. Histone and chromatin cross-talk. Curr. Opin. Cell. Biol. 15: 172–183
  • Strahl, B. D., and C. D. Allis. 2000. The language of covalent histone modifications. Nature. 403: 41–45
  • Ng, H. H., Y. Zhang, B. Hendrich, et al. 1999. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet. 23: 58–61
  • Zhang, Y., R. Jurkowska, S. Soeroes, et al. 2010. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38: 4246–4253
  • Hedrich, C. M., and G. C. Tsokos. 2011. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends. Mol. Med. 17: 714–724
  • Dai, Y., L. Zhang, Hu C, and Y. Zhang. 2010. Genome-wide analysis of histone H3 lysine 4 trimethylation by ChIP-chip in peripheral blood mononuclear cells of systemic lupus erythematosus patients. Clin. Exp. Rheumatol. 28: 158–168
  • Zhang, Z., L. Song, K. Maurer, et al. 2010. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes. Immun. 11: 124–133
  • Mishra, N., C. M. Reilly, D. R. Brown, et al. 2003. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111: 539–552
  • Yan, K., Q. Cao, C. M. Reilly, et al. 2011. Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J. Biol. Chem. 286: 28833–28843
  • Hu, N., X. Qiu, Y. Luo, et al. 2008. Abnormal histone modification patterns in lupus CD4+ T cells. J. Rheumatol. 35: 804–810
  • Rauen, T., C. M. Hedrich, Y. T. Juang, et al. 2011. cAMP-responsive element modulator (CREM)α protein induces interleukin 17A expression and mediates epigenetic alterations at the interleukin-17A gene locus in patients with systemic lupus erythematosus. J. Biol. Chem. 286: 43437–43446
  • Tenbrock, K., Y. T. Juang, N. Leukert, et al. 2006. The transcriptional repressor cAMP response element modulator α interacts with histone deacetylase 1 to repress promoter activity. J. Immunol. 177: 6159–6164
  • Zhou, Y., X. Qiu, Y. Luo, et al. 2011. Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cells. Lupus. 20: 1365–1371
  • Nambiar, M. P., V. G. Warke, C. U. Fisher, and G. C. Tsokos. 2002. Effect of trichostatin A on human T cells resembles signaling abnormalities in T cells of patients with systemic lupus erythematosus: a new mechanism for TCR ζ chain deficiency and abnormal signaling. J. Cell. Biochem. 85: 459–469
  • van Bavel, C.C., J. Dieker, S. Muller, et al. 2009. Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Mol. Immunol. 47: 511–516
  • Morris, K. V. 2008. RNA-mediated transcriptional gene silencing in human cells. Curr. Top. Microbiol. Immunol. 320: 211–224
  • Dai, Y., Y. S. Huang, M. Tang, et al. 2007. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 16: 939–946
  • Dai, Y., W. Sui, H. Lan, et al. 2009. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol. Int. 29: 749–754
  • Tang, Y., X. Luo, H. Cui, et al. 2009. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60: 1065–1075
  • Zhao, X., Y. Tang, B. Qu, et al. 2010. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum. 62: 3425–3435
  • Pan, W., S. Zhu, M. Yuan, et al. 2010. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184: 6773–6781
  • Yu, D., A. H. Tan, X. Hu, et al. 2007. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature. 450: 299–303
  • Xiao, C., L. Srinivasan, D. P. Calado, et al. 2008. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 9: 405–414
  • Zhao, S., Y. Wang, Y. Liang, et al. 2011. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 63: 1376–1386
  • Lashine, Y. A., A. M. Seoudi, S. Salah, and A. I. Abdelaziz. 2011. Expression signature of microRNA-181-a reveals its crucial role in the pathogenesis of paediatric systemic lupus erythematosus. Clin. Exp. Rheumatol. 29: 351–357
  • Te, J. L., I. M. Dozmorov, J. M. Guthridge, et al. 2010. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 5: e10344
  • Scott, G. K., M. D. Mattie, C. E. Berger, et al. 2006. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 66: 1277–1281
  • Fabbri, M., R. Garzon, A. Cimmino, et al. 2007. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. USA. 104: 15805–15810
  • Garzon, R., S. Liu, Fabbri M, et al. 2009. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 113: 6411–6418
  • Ng, E. K., W. P. Tsang, S. S. Ng, et al. 2009. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br. J. Cancer. 101: 699–706
  • Patel, D. R., and B. C. Richardson. 2010. Epigenetic mechanisms in lupus. Curr. Opin. Rheumatol. 22: 478–482
  • De Santis M, and C. Selmi. 2012. The therapeutic potential of epigenetics in autoimmune diseases. Clin. Rev. Allergy Immunol. 42: 92–101
  • Ford, P. A., A. L. Durham, R. E. Russell, et al. 2010. Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest. 137: 1338–1344
  • Shuttleworth, S. J., S. G. Bailey, and P. A. Townsend. 2010. Histone deacetylase inhibitors: new promise in the treatment of immune and inflammatory diseases. Curr. Drug Targets. 11: 1430–1438
  • Czech, M. P. 2006. MicroRNAs as therapeutic targets. N. Engl. J. Med. 354: 1194–1195
  • Thai, T. H., P. A. Christiansen, and G. C. Tsokos. 2010. Is there a link between dysregulated miRNA expression and disease? Discov. Med. 10: 184–194
  • Peedicayil, J. 2006. Epigenetic therapy – a new development in pharmacology. Indian J. Med. Res. 123: 17–24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.