503
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Autoantigens: Novel forms and presentation to the immune system

, , , &
Pages 220-233 | Received 23 Jul 2013, Accepted 27 Sep 2013, Published online: 05 Nov 2013

References

  • Derbinski, J., A. Schulte, B. Kyewski, and L. Klein. 2001. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2: 1032–1039
  • Doyle, H. A., and M. J. Mamula. 2005. Posttranslational modifications of self-antigens. Ann. N. Y. Acad. Sci. 1050: 1–9
  • Doyle, H. A., and M. J. Mamula. 2012. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr. Opin. Immunol. 24: 112–118
  • Bicker, K. L., and P. R. Thompson. 2013. The protein arginine deiminases: structure, function, inhibition, and disease. Biopolymers 99: 155–163
  • Klareskog, L., J. Ronnelid, K. Lundberg, L. Padyukov, and L. Alfredsson. 2008. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26: 651–675
  • Wegner, N., K. Lundberg, A. Kinloch, et al. 2010. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233: 34–54
  • Wiik, A. S., W. J. van Venrooij, and G. J. Pruijn. 2010. All you wanted to know about anti-CCP but were afraid to ask. Autoimmun. Rev. 10: 90–93
  • Herrmann, M., R. E. Voll, O. M. Zoller, et al. 1998. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 41: 1241–1250
  • Tas, S. W., P. Quartier, M. Botto, and L. Fossati-Jimack. 2006. Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro, while only SLE macrophages have impaired uptake of apoptotic cells. Ann. Rheum. Dis. 65: 216–221
  • Hepburn, A. L., I. A. Lampert, J. J. Boyle, et al. 2007. In vivo evidence for apoptosis in the bone marrow in systemic lupus erythematosus. Ann. Rheum. Dis. 66: 1106–1109
  • Kuhn, A., M. Herrmann, S. Kleber, et al. 2006. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis Rheum. 54: 939–950
  • Casciola-Rosen, L. A., G. Anhalt, and A. Rosen. 1994. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179: 1317–1330
  • Utz, P. J., and P. Anderson. 2000. Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules. Cell Death Differ. 7: 589–602
  • Neugebauer, K. M., J. T. Merrill, M. H. Wener, et al. 2000. SR proteins are autoantigens in patients with systemic lupus erythematosus. Importance of phosphoepitopes. Arthritis Rheum. 43: 1768–1778
  • Cimmino, A., R. Capasso, F. Muller, et al. 2008. Protein isoaspartate methyltransferase prevents apoptosis induced by oxidative stress in endothelial cells: role of Bcl-Xl deamidation and methylation. PLoS One 3: e3258
  • D'Angelo, S., D. Ingrosso, V. Migliardi, et al. 2005. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein damage induced by long-wave ultraviolet radiation in melanoma cells. Free Radic. Biol. Med. 38: 908–919
  • Doyle, H. A., D. W. Aswad, and M. J. Mamula. 2013. Autoimmunity to isomerized histone H2B in systemic lupus erythematosus. Autoimmunity 46: 6–13
  • Brahms, H., J. Raymackers, A. Union, et al. 2000. The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J. Biol. Chem. 275: 17122–17129
  • Liu, C. L., S. Tangsombatvisit, J. M. Rosenberg, et al. 2012. Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res. Ther. 14: R25
  • Mamula, M. J., R. J. Gee, J. I. Elliott, et al. 1999. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J. Biol. Chem. 274: 22321–22327
  • van Bavel, C. C., J. Dieker, S. Muller, et al. 2009. Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Mol. Immunol. 47: 511–516
  • Lehmann, P. V., T. Forsthuber, A. Miller, and E. E. Sercarz. 1992. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358: 155–157
  • Kidd, B. A., P. P. Ho, O. Sharpe, et al. 2008. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res. Ther. 10: R119
  • Arbuckle, M. R., M. T. McClain, M. V. Rubertone, et al. 2003. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349: 1526–1533
  • Gergely P., Jr. C. Grossman, B. Niland, et al. 2002. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46: 175–190
  • Gergely P. Jr., B. Niland, N. Gonchoroff, et al. 2002. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J. Immunol. 169: 1092–1101
  • Manoury, B., D. Mazzeo, L. Fugger, et al. 2002. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat. Immunol. 3: 169–174
  • Gahring, L., N. G. Carlson, E. L. Meyer, and S. W. Rogers. 2001. Granzyme B proteolysis of a neuronal glutamate receptor generates an autoantigen and is modulated by glycosylation. J. Immunol. 166: 1433–1438
  • Johnson, B. A., and D. W. Aswad. 1990. Fragmentation of isoaspartyl peptides and proteins by carboxypeptidase Y: release of isoaspartyl dipeptides as a result of internal and external cleavage. Biochemistry 29: 4373–4380
  • Moss, C. X., S. P. Matthews, D. J. Lamont, and C. Watts. 2005. Asparagine deamidation perturbs antigen presentation on class II major histocompatibility complex molecules. J. Biol. Chem. 280: 18498–18503
  • Doyle, H. A., R. J. Gee, and M. J. Mamula. 2007. Altered immunogenicity of isoaspartate containing proteins. Autoimmunity 40: 131–137
  • Casciola-Rosen, L. A., D. K. Miller, G. J. Anhalt, and A. Rosen. 1994. Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269: 30757–30760
  • Ireland, J. M., and E. R. Unanue. 2011. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med. 208: 2625–2632
  • de Haan, E. C., J. P. Wagenaar-Hilbers, R. M. Liskamp, et al. 2005. Limited plasticity in T cell recognition of modified T cell receptor contact residues in MHC class II bound peptides. Mol. Immunol. 42: 355–364
  • Hill, J. A., S. Southwood, A. Sette, et al. 2003. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 171: 538–541
  • German, D. C., C. A. Bloch, and N. M. Kredich. 1983. Measurements of S-adenosylmethionine and L-homocysteine metabolism in cultured human lymphoid cells. J. Biol. Chem. 258: 10997–11003
  • Mowen, K. A., J. Tang, W. Zhu, et al. 2001. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 104: 731–741
  • Blanchet, F., A. Cardona, F. A. Letimier, et al. 2005. CD28 costimulatory signal induces protein arginine methylation in T cells. J. Exp. Med. 202: 371–377
  • Strickland, F. M., and B. C. Richardson. 2008. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity 41: 278–286
  • Pritzker, L. B., S. Joshi, J. J. Gowan, et al. 2000. Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39: 5374–5381
  • Lin, W. J., J. D. Gary, M. C. Yang, et al. 1996. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem. 271: 15034–15044
  • Bedford, M. T., and S. G. Clarke. 2009. Protein arginine methylation in mammals: who, what, and why. Mol. Cell. 33: 1–13
  • Meissner, T., E. Krause, I. Lodige, and U. Vinkemeier. 2004. Arginine methylation of STAT1: a reassessment. Cell 119: 587–589; discussion 589–590
  • Parry, R. V., and S. G. Ward. 2010. Protein arginine methylation: a new handle on T lymphocytes? Trends Immunol. 31: 164–169
  • Mowen, K. A., B. T. Schurter, J. W. Fathman, et al. 2004. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol. Cell. 15: 559–571
  • Wang, H., Z. Q. Huang, L. Xia, et al. 2001. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853–857
  • Huang, S., M. Litt, and G. Felsenfeld. 2005. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev. 19: 1885–1893
  • Li, X., X. Hu, B. Patel, et al. 2010. H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 115: 2028–2037
  • Hu, N., X. Qiu, Y. Luo, et al. 2008. Abnormal histone modification patterns in lupus CD4+ T cells. J. Rheumatol. 35: 804–810
  • Veldhoen, M., R. J. Hocking, C. J. Atkins, et al. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189
  • Akimzhanov, A. M., X. O. Yang, and C. Dong. 2007. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. 282: 5969–5972
  • Crispin, J. C., V. C. Kyttaris, C. Terhorst, and G. C. Tsokos. 2010. T cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6: 317–325
  • Moulton, V. R., and G. C. Tsokos. 2011. Abnormalities of T cell signaling in systemic lupus erythematosus. Arthritis Res. Ther. 13: 207
  • Akahoshi, M., H. Nakashima, Y. Tanaka, et al. 1999. Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum. 42: 1644–1648
  • Tucci, M., S. Stucci, S. Strippoli, and F. Silvestris. 2010. Cytokine overproduction, T-cell activation, and defective T-regulatory functions promote nephritis in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010: Article ID 457146
  • Doyle, H. A., R. J. Gee, and M. J. Mamula. 2003. A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production. J. Immunol. 171: 2840–2847
  • Yang, M. L., H. A. Doyle, R. J. Gee, et al. 2006. Intracellular protein modification associated with altered T cell functions in autoimmunity. J. Immunol. 177: 4541–4549
  • Burgess, J. A., P. Lescuyer, A. Hainard, et al. 2006. Identification of brain cell death associated proteins in human post-mortem cerebrospinal fluid. J. Proteome Res. 5: 1674–1681
  • Molina, H., J. Bunkenborg, G. H. Reddy, et al. 2005. A proteomic analysis of human hemodialysis fluid. Mol. Cell. Proteomics 4: 637–650
  • Young, G. W., S. A. Hoofring, M. J. Mamula, et al. 2005. Protein L-isoaspartyl methyltransferase catalyzes in vivo racemization of Aspartate-25 in mammalian histone H2B. J. Biol. Chem. 280: 26094–26098
  • Lowenson, J. D., E. Kim, S. G. Young, and S. Clarke. 2001. Limited accumulation of damaged proteins in l-isoaspartyl (D-aspartyl) O-methyltransferase-deficient mice. J. Biol. Chem. 276: 20695–20702
  • Teshima, G., J. Porter, K. Yim, et al. 1991. Deamidation of soluble CD4 at asparagine-52 results in reduced binding capacity for the HIV-1 envelope glycoprotein gp120. Biochemistry 30: 3916–3922
  • Zhang, Y., and H. Wang. 2012. Integrin signalling and function in immune cells. Immunology 135:268–275
  • Evans, R., A. C. Lellouch, L. Svensson, et al. 2011. The integrin LFA-1 signals through ZAP-70 to regulate expression of high-affinity LFA-1 on T lymphocytes. Blood 117: 3331–3342
  • Corti, A., and F. Curnis. 2011. Isoaspartate-dependent molecular switches for integrin-ligand recognition. J. Cell Sci. 124: 515–522
  • Lawson, B. R., T. Eleftheriadis, V. Tardif, et al. 2012. Transmethylation in immunity and autoimmunity. Clin. Immunol. 143: 8–21
  • Karouzakis, E., R. E. Gay, B. A. Michel, et al. 2009. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60: 3613–3622
  • Wu, Q. L., Y. F. Fu, W. L. Zhou, et al. 2005. Inhibition of S-adenosyl-L-homocysteine hydrolase induces immunosuppression. J. Pharmacol. Exp. Ther. 313: 705–711
  • Fu, Y. F., J. X. Wang, Y. Zhao, et al. 2006. S-adenosyl-L-homocysteine hydrolase inactivation curtails ovalbumin-induced immune responses. J. Pharmacol. Exp. Ther. 316: 1229–1237
  • Wolos, J. A., K. A. Frondorf, G. F. Babcock, et al. 1993. Immunomodulation by an inhibitor of S-adenosyl-L-homocysteine hydrolase: inhibition of in vitro and in vivo allogeneic responses. Cell. Immunol. 149: 402–408
  • Wolos, J. A., K. A. Frondorf, G. F. Davis, et al. 1993. Selective inhibition of T cell activation by an inhibitor of S-adenosyl-L-homocysteine hydrolase. J. Immunol. 150: 3264–3273
  • ‘t Hart, B. A., R. Q. Hintzen, and J. D. Laman. 2009. Multiple sclerosis -- a response-to-damage model. Trends Mol. Med. 15: 235–244
  • Stekman, I. L., A. M. Blasini, M. Leon-Ponte, et al. 1991. Enhanced CD3-mediated T lymphocyte proliferation in patients with systemic lupus erythematosus. Arthritis Rheum. 34: 459–467
  • Vratsanos, G. S., S. Jung, Y. M. Park, and J. Craft. 2001. CD4(+) T cells from lupus-prone mice are hyperresponsive to T cell receptor engagement with low and high affinity peptide antigens: a model to explain spontaneous T cell activation in lupus. J. Exp. Med. 193: 329–337
  • Saso, Y., E. M. Conner, B. R. Teegarden, and C. S. Yuan. 2001. S-Adenosyl-L-homocysteine hydrolase inhibitor mediates immunosuppressive effects in vivo: suppression of delayed type hypersensitivity ear swelling and peptidoglycan polysaccharide-induced arthritis. J. Pharmacol. Exp. Ther. 296: 106–112
  • Lawson, B. R., Y. Manenkova, J. Ahamed, et al. 2007. Inhibition of transmethylation down-regulates CD4 T cell activation and curtails development of autoimmunity in a model system. J. Immunol. 178: 5366–5374
  • Yang, M. L., A. J. Gee, R. J. Gee, et al. 2013. Lupus autoimmunity altered by cellular methylation metabolism. Autoimmunity 46: 21–31
  • Cheng, D., N. Yadav, R. W. King, et al. 2004. Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem. 279: 23892–23899
  • Bonham, K., S. Hemmers, Y. H. Lim, et al. 2010. Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production. FEBS J. 277: 2096–2108
  • Dillon, M. B., D. A. Bachovchin, S. J. Brown, et al. 2012. Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization. ACS Chem. Biol. 7: 1198–1204
  • Tan, E. M., A. S. Cohen, J. F. Fries, et al. 1982. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25: 1271–1277
  • Lu, Q. 2013. The critical importance of epigenetics in autoimmunity. J. Autoimmun. 41: 1–5
  • Balada, E., J. Ordi-Ros, and M. Vilardell-Tarres. 2007. DNA methylation and systemic lupus erythematosus. Ann. N. Y. Acad. Sci. 1108: 127–136
  • Zouali, M. 2011. Epigenetics in lupus. Ann. N. Y. Acad. Sci. 1217: 154–165
  • Huck, S., E. Deveaud, A. Namane, and M. Zouali. 1999. Abnormal DNA methylation and deoxycytosine-deoxyguanine content in nucleosomes from lymphocytes undergoing apoptosis. FASEB J. 13: 1415–1422
  • Huck, S., and M. Zouali. 1996. DNA methylation: a potential pathway to abnormal autoreactive lupus B cells. Clin. Immunol. Immunopathol. 80: 1–8
  • Kaplan, M. J. 2004. Apoptosis in systemic lupus erythematosus. Clin. Immunol. 112: 210–218
  • Fraga, M. F., M. Herranz, J. Espada, et al. 2004. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res. 64: 5527–5534
  • Karouzakis, E., R. E. Gay, S. Gay, and M. Neidhart. 2009. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat. Rev. Rheumatol. 5: 266–272
  • Sui, W., X. Hou, W. Che, et al. 2013. The applied basic research of systemic lupus erythematosus based on the biological omics. Genes Immun. 14: 133–146
  • Dieker, J., and S. Muller. 2010. Epigenetic histone code and autoimmunity. Clin. Rev. Allergy Immunol. 39: 78–84
  • van Bavel, C. C., J. W. Dieker, Y. Kroeze, et al. 2011. Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann. Rheum. Dis. 70: 201–207
  • Arita, K., H. Hashimoto, T. Shimizu, et al. 2004. Structural basis for Ca(2+)-induced activation of human PAD4. Nat. Struct. Mol. Biol. 11: 777–783
  • Machold, K. P., T. A. Stamm, V. P. Nell, et al. 2007. Very recent onset rheumatoid arthritis: clinical and serological patient characteristics associated with radiographic progression over the first years of disease. Rheumatology (Oxford) 46: 342–349
  • Lambrecht, S., K. Tilleman, D. Elewaut, and D. Deforce. 2008. Proteomics in rheumatology: the beginning of a fairy tale? Proteomics Clin. Appl. 2: 411–419
  • Schellekens, G. A., B. A. de Jong, F. H. van den Hoogen, et al. 1998. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 101: 273–281
  • Bizzaro, N., F. Allegri, C. Alpini, et al. 2011. Multicentric evaluation of a second generation assay to detect antiviral citrullinated peptide antibodies: a collaborative study by the Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni. J. Clin. Pathol. 64: 1139–1141
  • Thompson, P. R., and W. Fast. 2006. Histone citrullination by protein arginine deiminase: is arginine methylation a green light or a roadblock? ACS Chem. Biol. 1:433–441
  • Heyn, H., and M. Esteller. 2012. DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Genet. 13: 679–692
  • Shlomchik, M. J., M. P. Madaio, D. Ni, et al. 1994. The role of B cells in lpr/lpr-induced autoimmunity. J. Exp. Med. 180: 1295–1306
  • Chan, O. T., M. P. Madaio, and M. J. Shlomchik. 1999. B cells are required for lupus nephritis in the polygenic, Fas-intact MRL model of systemic autoimmunity. J. Immunol. 163: 3592–3596
  • Eisenberg, R. A., S. Y. Craven, R. W. Warren, and P. L. Cohen. 1987. Stochastic control of anti-Sm autoantibodies in MRL/Mp-lpr/lpr mice. J. Clin. Invest. 80: 691–697
  • Tsourkas, P. K., W. Liu, S. C. Das, et al. 2012. Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement. Cell. Mol. Immunol. 9: 62–74
  • Schnyder, T., A. Castello, C. Feest, et al. 2011. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity 34: 905–918
  • Pathak, S., and C. Mohan. 2011. Cellular and molecular pathogenesis of systemic lupus erythematosus: lessons from animal models. Arthritis Res. Ther. 13: 241
  • O'Neill, S. K., A. Getahun, S. B. Gauld, et al. 2011. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 35: 746–756
  • Blum, J. S., P. A. Wearsch, and P. Cresswell. 2013. Pathways of antigen processing. Annu. Rev. Immunol. 31: 443–473
  • Brennan, P. J., M. Brigl, and M. B. Brenner. 2013. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 13: 101–117
  • Moens, U., O. M. Seternes, A. W. Hey, et al. 1995. In vivo expression of a single viral DNA-binding protein generates systemic lupus erythematosus-related autoimmunity to double-stranded DNA and histones. Proc. Natl. Acad. Sci. U S A. 92: 12393–12397
  • Desai, D. D., and T. N. Marion. 2000. Induction of anti-DNA antibody with DNA-peptide complexes. Int. Immunol. 12: 1569–1578
  • Shlomchik, M. J., J. E. Craft, and M. J. Mamula. 2001. From T to B and back again: positive feedback in systemic autoimmune disease. Nat. Rev. Immunol. 1: 147–153
  • Batista, F. D., and M. S. Neuberger. 1998. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8: 751–759
  • Kouskoff, V., S. Famiglietti, G. Lacaud, et al. 1998. Antigens varying in affinity for the B cell receptor induce differential B lymphocyte responses. J. Exp. Med. 188: 1453–1464
  • Ma, J. K., M. Y. Platt, J. Eastham-Anderson, et al. 2012. MHC class II distribution in dendritic cells and B cells is determined by ubiquitin chain length. Proc. Natl. Acad. Sci. U S A. 109: 8820–8827
  • Batista, F. D., D. Iber, and M. S. Neuberger. 2001. B cells acquire antigen from target cells after synapse formation. Nature 411: 489–494
  • Batista, F. D., and N. E. Harwood. 2009. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9: 15–27
  • Yuseff, M. I., A. Reversat, D. Lankar, et al. 2011. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35: 361–374
  • Haka, A. S., I. Grosheva, E. Chiang, et al. 2009. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol. Biol. Cell. 20: 4932–4940
  • Ahmadi, T., A. Flies, Y. Efebera, and D. H. Sherr. 2008. CD40 Ligand-activated, antigen-specific B cells are comparable to mature dendritic cells in presenting protein antigens and major histocompatibility complex class I- and class II-binding peptides. Immunology 124: 129–140
  • Magner, W. J., A. L. Kazim, C. Stewart, et al. 2000. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J. Immunol. 165: 7017–7024
  • Merluzzi, S., M. Moretti, S. Altamura, et al. 2004. CD40 stimulation induces Pax5/BSAP and EBF activation through a APE/Ref-1-dependent redox mechanism. J. Biol. Chem. 279: 1777–1786
  • Rechavi, O., Y. Erlich, H. Amram, et al. 2009. Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs. Genes Dev. 23: 1971–1979
  • Ahmed, K. A., M. A. Munegowda, Y. Xie, and J. Xiang. 2008. Intercellular trogocytosis plays an important role in modulation of immune responses. Cell. Mol. Immunol. 5: 261–269
  • Aucher, A., E. Magdeleine, E. Joly, and D. Hudrisier. 2008. Capture of plasma membrane fragments from target cells by trogocytosis requires signaling in T cells but not in B cells. Blood 111: 5621–5628
  • Waschbisch, A., S. G. Meuth, A. M. Herrmann, et al. 2009. Intercellular exchanges of membrane fragments (trogocytosis) between human muscle cells and immune cells: a potential mechanism for the modulation of muscular immune responses. J. Neuroimmunol. 209: 131–138
  • Osborne, D. G., and S. A. Wetzel. 2012. Trogocytosis results in sustained intracellular signaling in CD4(+) T cells. J. Immunol. 189: 4728–4739
  • Harvey, B. P., R. J. Gee, A. M. Haberman, et al. 2007. Antigen presentation and transfer between B cells and macrophages. Eur. J. Immunol. 37: 1739–1751
  • Harvey, B. P., T. E. Quan, B. J. Rudenga, et al. 2008. Editing antigen presentation: antigen transfer between human B lymphocytes and macrophages mediated by class A scavenger receptors. J. Immunol. 181: 4043–4051
  • Raycroft, M. T., B. P. Harvey, M. J. Bruck, and M. J. Mamula. 2012. Inhibition of antigen trafficking through scavenger receptor A. J. Biol. Chem. 287: 5310–5316
  • Yan, J., B. P. Harvey, R. J. Gee, et al. 2006. B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J. Immunol. 177: 4481–4487
  • Maranon, C., J. F. Desoutter, G. Hoeffel, et al. 2004. Dendritic cells cross-present HIV antigens from live as well as apoptotic infected CD4+ T lymphocytes. Proc. Natl. Acad. Sci. U S A. 101: 6092–6097
  • Harshyne, L. A., M. I. Zimmer, S. C. Watkins, and S. M. Barratt-Boyes. 2003. A role for class A scavenger receptor in dendritic cell nibbling from live cells. J. Immunol. 170: 2302–2309
  • de Winther, M. P., K. W. van Dijk, B. J. van Vlijmen, et al. 1999. Macrophage specific overexpression of the human macrophage scavenger receptor in transgenic mice, using a 180-kb yeast artificial chromosome, leads to enhanced foam cell formation of isolated peritoneal macrophages. Atherosclerosis 147: 339–347
  • Winyard, P. G., F. Tatzber, H. Esterbauer, et al. 1993. Presence of foam cells containing oxidised low density lipoprotein in the synovial membrane from patients with rheumatoid arthritis. Ann. Rheum. Dis. 52: 677–680
  • Giry, C., L. M. Giroux, M. Roy, et al. 1996. Characterization of inherited scavenger receptor overexpression and abnormal macrophage phenotype in a normolipidemic subject with planar xanthomas. J. Lipid Res. 37: 1422–1435
  • Suzuki, H., Y. Kurihara, M. Takeya, et al. 1997. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386: 292–296
  • Li, J., Q. Fu, H. Cui, et al. 2011. Interferon-alpha priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-alpha and atherosclerosis in lupus. Arthritis Rheum. 63: 492–502
  • Chen, X. W., Y. Shen, C. Y. Sun, et al. 2011. Anti-class a scavenger receptor autoantibodies from systemic lupus erythematosus patients impair phagocytic clearance of apoptotic cells by macrophages in vitro. Arthritis Res. Ther. 13: R9
  • Wermeling, F., Y. Chen, T. Pikkarainen, et al. 2007. Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. J. Exp. Med. 204: 2259–2265
  • Platt, N., H. Suzuki, T. Kodama, and S. Gordon. 2000. Apoptotic thymocyte clearance in scavenger receptor class A-deficient mice is apparently normal. J. Immunol. 164: 4861–4867
  • Hochreiter-Hufford, A., and K. S. Ravichandran. 2013. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5: ID:a008748
  • Huang, J., D. L. Zheng, F. S. Qin, et al. 2010. Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling. J. Clin. Invest. 120: 223–241
  • Raman, C. 2002. CD5, an important regulator of lymphocyte selection and immune tolerance. Immunol. Res. 26: 255–263
  • Ramos-Casals, M., J. Font, M. Garcia-Carrasco, et al. 2001. High circulating levels of soluble scavenger receptors (sCD5 and sCD6) in patients with primary Sjogren's syndrome. Rheumatology (Oxford) 40: 1056–1059
  • Youinou, P., and Y. Renaudineau. 2011. CD5 expression in B cells from patients with systemic lupus erythematosus. Crit. Rev. Immunol. 31: 31–42
  • Aruffo, A., M. A. Bowen, D. D. Patel, et al. 1997. CD6-ligand interactions: a paradigm for SRCR domain function? Immunol. Today 18: 498–504
  • Brown, M. H., and E. Lacey. 2010. A ligand for CD5 is CD5. J. Immunol. 185: 6068–6074
  • Hsu, H. Y., D. P. Hajjar, K. M. Khan, and D. J. Falcone. 1998. Ligand binding to macrophage scavenger receptor-A induces urokinase-type plasminogen activator expression by a protein kinase-dependent signaling pathway. J. Biol. Chem. 273: 1240–1246
  • Utz, P. J., M. Hottelet, P. H. Schur, and P. Anderson. 1997. Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J. Exp. Med. 185: 843–854
  • Neeli, I., S. N. Khan, and M. Radic. 2008. Histone deimination as a response to inflammatory stimuli in neutrophils. J. Immunol. 180: 1895–1902
  • Dieker, J. W., J. H. Fransen, C. C. van Bavel, et al. 2007. Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum. 56: 1921–1933
  • Nagai, K., M. Arito, Y. Takakuwa, et al. 2012. Altered posttranslational modification on U1 small nuclear ribonucleoprotein 68k in systemic autoimmune diseases detected by 2D Western blot. Electrophoresis 33: 2028–2035
  • Greidinger, E. L., M. F. Foecking, S. Ranatunga, and R. W. Hoffman. 2002. Apoptotic U1-70 kd is antigenically distinct from the intact form of the U1-70-kd molecule. Arthritis Rheum. 46: 1264–1269
  • Terzoglou, A. G., J. G. Routsias, H. M. Moutsopoulos, and A. G. Tzioufas. 2006. Post-translational modifications of the major linear epitope 169-190aa of Ro60 kDa autoantigen alter the autoantibody binding. Clin. Exp. Immunol. 146: 60–65
  • Chang, M. K., C. J. Binder, Y. I. Miller, et al. 2004. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 200: 1359–1370
  • Sun, Q., X. Yang, B. Zhong, et al. 2012. Upregulated protein arginine methyltransferase 1 by IL-4 increases eotaxin-1 expression in airway epithelial cells and participates in antigen-induced pulmonary inflammation in rats. J. Immunol. 188: 3506–3512
  • Kleinschmidt, M. A., G. Streubel, B. Samans, et al. 2008. The protein arginine methyltransferases CARM1 and PRMT1 cooperate in gene regulation. Nucleic. Acids Res. 36: 3202–3213
  • Sanchez-Margalet, V., and S. Najib. 1999. p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K. FEBS. Lett. 455: 307–310
  • Le Romancer, M., I. Treilleux, N. Leconte, et al. 2008. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol. Cell. 31: 212–221
  • Weber, S., F. Maass, M. Schuemann, et al. 2009. PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling. Genes Dev. 23: 118–132
  • Infantino, S., B. Benz, T. Waldmann, et al. 2010. Arginine methylation of the B cell antigen receptor promotes differentiation. J. Exp. Med. 207: 711–719
  • Iwasaki, H., J. C. Kovacic, M. Olive, et al. 2010. Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ. Res. 107: 992–1001
  • Kim, J., J. Lee, N. Yadav, et al. 2004. Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J. Biol. Chem. 279: 25339–25344
  • Li, J., Z. Zhao, C. Carter, et al. 2013. Coactivator-associated arginine methyltransferase 1 regulates fetal hematopoiesis and thymocyte development. J. Immunol. 190: 597--604
  • Wysocka, J., C. D. Allis, and S. Coonrod. 2006. Histone arginine methylation and its dynamic regulation. Front. Biosci. 11: 344–355
  • Richard, S., M. Morel, and P. Cleroux. 2005. Arginine methylation regulates IL-2 gene expression: a role for protein arginine methyltransferase 5 (PRMT5). Biochem. J. 388: 379–386
  • Eckert, D., K. Biermann, D. Nettersheim, et al. 2008. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Dev. Biol. 8: 106
  • Pal, S., R. A. Baiocchi, J. C. Byrd, et al. 2007. Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO. J. 26: 3558–3569
  • Wang, L., S. Pal, and S. Sif. 2008. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol. Cell. Biol. 28: 6262–6277
  • Migliori, V., J. Muller, S. Phalke, et al. 2012. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat. Struct. Mol. Biol. 19: 136–144
  • Lee, J. H., J. R. Cook, Z. H. Yang, et al. 2005. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J. Biol. Chem. 280: 3656–3664
  • Miranda, T. B., M. Miranda, A. Frankel, and S. Clarke. 2004. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J. Biol. Chem. 279: 22902–22907

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.