880
Views
44
CrossRef citations to date
0
Altmetric
Review article

B cells participate in tolerance and autoimmunity through cytokine production

, &
Pages 1-12 | Received 15 Aug 2013, Accepted 13 Oct 2013, Published online: 18 Nov 2013

References

  • Parker, D. C. 1993. T cell-dependent B cell activation. Annu. Rev. Immunol. 11: 331–360
  • Chatenoud, L., B. Salomon, and J. A. Bluestone. 2001. Suppressor T cells – they're back and critical for regulation of autoimmunity! Immunol. Rev. 182: 149–163
  • Shlomchik, M. J., J. E. Craft, and M. J. Mamula. 2001. From T to B and back again: positive feedback in systemic autoimmune disease. Nat. Rev. Immunol. 1: 147–153
  • Stuart, R. W., and M. K. Racke. 2002. Targeting T cell costimulation in autoimmune disease. Expert Opin. Ther. Targets 6: 275–289
  • Rosman, Z., Y. Shoenfeld, and G. Zandman-Goddard. 2013. Biologic therapy for autoimmune diseases: an update. BMC Med. 11: 88
  • Baumann, A. 2006. Early development of therapeutic biologics–pharmacokinetics. Curr. Drug Metab. 7: 15–21
  • Breda, L., M. Del Torto, S. De Sanctis, and F. Chiarelli. 2011. Biologics in children's autoimmune disorders: efficacy and safety. Eur. J. Pediatr. 170: 157–167
  • Chames, P., M. Van Regenmortel, E. Weiss, and D. Baty. 2009. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157: 220–233
  • Looney, R. J. 2005. B cells as a therapeutic target in autoimmune diseases other than rheumatoid arthritis. Rheumatology (Oxford) 44: ii13–ii17
  • Edwards, J. C., and G. Cambridge. 2006. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 6: 394–403
  • Cross, A. H., J. L. Stark, J. Lauber, et al. 2006. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol. 180: 63–70
  • Liossis, S. N., and P. P. Sfikakis. 2008. Rituximab-induced B cell depletion in autoimmune diseases: potential effects on T cells. Clin. Immunol. 127: 280–285
  • Datta, S. K. 2009. Anti-CD20 antibody is an efficient therapeutic tool for the selective removal of autoreactive T cells. Nat. Clin. Pract. Rheumatol. 5: 80–82
  • Hamaguchi, Y., J. Uchida, D. W. Cain, et al. 2005. The peritoneal cavity provides a protective niche for B1 and conventional B lymphocytes during anti-CD20 immunotherapy in mice. J. Immunol. 174: 4389–4399
  • Lindholm, C., K. Borjesson-Asp, K. Zendjanchi, et al. 2008. Longterm clinical and immunological effects of anti-CD20 treatment in patients with refractory systemic lupus erythematosus. J. Rheumatol. 35: 826–833
  • Rehnberg, M., S. Amu, A. Tarkowski, et al. 2009. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res. Ther. 11: R123
  • Youinou, P., T. E. Taher, J. O. Pers, et al. 2009. B lymphocyte cytokines and rheumatic autoimmune disease. Arthritis Rheum. 60: 1873–1880
  • Robbins, W. C., H. R. Holman, H. Deicher, and H. G. Kunkel. 1957. Complement fixation with cell nuclei and DNA in lupus erythematosus. Proc. Soc. Exp. Biol. Med. 96: 575–579
  • Hepburn, A. L. 2001. The LE cell. Rheumatology (Oxford) 40: 826–827
  • Miescher, P., and M. Fauconnet. 1954. Absorption of L. E. factor by isolated cell nuclei. Experientia. 10: 252–253
  • Godman, G. C., and A. D. Deitch. 1957. A cytochemical study of the L. E. bodies of systemic lupus erythematosus. I. Nucleic acids. J. Exp. Med. 106: 575–592
  • Holborow, E. J., D. M. Weir, and G. D. Johnson. 1957. A serum factor in lupus erythematosus with affinity for tissue nuclei. Br. Med. J. 2: 732–734
  • Holman, H., and H. R. Deicher. 1959. The reaction of the lupus erythematosus (L.E.) cell factor with deoxyribonucleoprotein of the cell nucleus. J. Clin. Invest. 38: 2059–2072
  • Lleo, A., P. Invernizzi, B. Gao, et al. 2010. Definition of human autoimmunity – autoantibodies versus autoimmune disease. Autoimmun. Rev. 9: A259–A266
  • Burnet, F. M. 1972. A reassessment of the forbidden clone hypothesis of autoimmune disease. Aust. J. Exp. Biol. Med. Sci. 50: 1–9
  • Caja, S., M. Maki, K. Kaukinen, and K. Lindfors. 2011. Antibodies in celiac disease: implications beyond diagnostics. Cell. Mol. Immunol. 8: 103–109
  • Rajan, T. V. 2003. The Gell-Coombs classification of hypersensitivity reactions: a re-interpretation. Trends Immunol. 24: 376–379
  • Dornmair, K., N. Goebels, H. U. Weltzien, et al. 2003. T-cell-mediated autoimmunity: novel techniques to characterize autoreactive T-cell receptors. Am. J. Pathol. 163: 1215–1226
  • Ohashi, P. S. 2002. T-cell signalling and autoimmunity: molecular mechanisms of disease. Nat. Rev. Immunol. 2: 427–438
  • Afzali, B., G. Lombardi, R. I. Lechler, and G. M. Lord. 2007. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin. Exp. Immunol. 148: 32–46
  • Walker, L. S., and A. K. Abbas. 2002. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2: 11–19
  • Jordan, M. S., A. Boesteanu, A. J. Reed, et al. 2001. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2: 301–306
  • Dejaco, C., C. Duftner, B. Grubeck-Loebenstein, and M. Schirmer. 2006. Imbalance of regulatory T cells in human autoimmune diseases. Immunology 117: 289–300
  • Shevach, E. M. 2000. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18: 423–449
  • Sakaguchi, S., N. Sakaguchi, M. Asano, et al. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155: 1151–1164
  • Fontenot, J. D., and A. Y. Rudensky. 2005. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6: 331–337
  • Jager, A., and V. K. Kuchroo. 2010. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand. J. Immunol. 72: 173–184
  • Leung, S., X. Liu, L. Fang, et al. 2010. The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell. Mol. Immunol. 7: 182–189
  • Eisenstein, E. M., and C. B. Williams. 2009. The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr. Res. 65: 26R–31R
  • Mai, J., H. Wang, and X. F. Yang. 2010. Th 17 cells interplay with Foxp3+ Tregs in regulation of inflammation and autoimmunity. Front. Biosci. (Landmark Ed). 15: 986–1006
  • Wing, K., and S, Sakaguchi. 2010. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11: 7–13
  • Konya, C., J. J. Goronzy, and C. M. Weyand. 2009. Treating autoimmune disease by targeting CD8(+) T suppressor cells. Expert Opin. Biol. Ther. 9: 951–965
  • von Boehmer, H., and C. Daniel. 2013. Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat. Rev. Drug Discov. 12: 51–63
  • Dunne, P. J., and J. M. Fletcher. 2010. Recent advances in regulatory T cell therapy of autoimmunity, graft rejection and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 4: 231–243
  • Feldmann, M., and R. N. Maini. 2001. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19: 163–196
  • Lagana, B., M. Vinciguerra, and R. D'Amelio. 2009. Modulation of T-cell co-stimulation in rheumatoid arthritis: clinical experience with abatacept. Clin. Drug Investig. 29: 185–202
  • Wolfe, F., and D. J. Hawley. 1998. The longterm outcomes of rheumatoid arthritis: Work disability: a prospective 18 year study of 823 patients. J. Rheumatol. 25: 2108–2117
  • St Clair, E. W., D. M. van der Heijde, J. S. Smolen, et al. 2004. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum. 50: 3432–3443
  • van Gaalen, F. A., S. P. Linn-Rasker, W. J. van Venrooij, et al. 2004. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum. 50: 709–715
  • Moreland, L. W., M. H. Schiff, S. W. Baumgartner, et al. 1999. Etanercept therapy in rheumatoid arthritis. A randomized, controlled trial. Ann. Intern. Med. 130: 478–486
  • Korhonen, R., and E. Moilanen. 2010. Anti-CD20 antibody rituximab in the treatment of rheumatoid arthritis. Basic Clin. Pharmacol. Toxicol. 106: 13–21
  • Carreno, L., F. J. Lopez-Longo, C. M. Gonzalez, and I. Monteagudo. 2002. Treatment options for juvenile-onset systemic lupus erythematosus. Paediatr. Drugs 4: 241–256
  • Borchers, A. T., N. Leibushor, S. M. Naguwa, et al. 2012. Lupus nephritis: a critical review. Autoimmun. Rev. 12: 174–194
  • Horowitz, D. L., and R. Furie. 2012. Belimumab is approved by the FDA: what more do we need to know to optimize decision making? Curr. Rheumatol. Rep. 14: 318–323
  • Lim, S. H., S. A. Beers, R. R. French, et al. 2010. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 95: 135–143
  • Leandro, M. J. 2013. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res. Ther. 15: S3
  • Golay, J., L. Zaffaroni, T. Vaccari, et al. 2000. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95: 3900–3908
  • Hatjiharissi, E., L. Xu, D. D. Santos, et al. 2007. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood 110: 2561–2564
  • Pedersen, I. M., A. M. Buhl, P. Klausen, et al. 2002. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood 99: 1314–1319
  • Cardarelli, P. M., M. Quinn, D. Buckman, et al. 2002. Binding to CD20 by anti-B1 antibody or F(ab')(2) is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol. Immunother. 51: 15–24
  • Einfeld, D. A., J. P. Brown, M. A. Valentine, et al. 1988. Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. EMBO J. 7: 711–717
  • Stashenko, P., L. M. Nadler, R. Hardy, and S. F. Schlossman. 1980. Characterization of a human B lymphocyte-specific antigen. J. Immunol. 125: 1678–1685
  • Warner, N. L., M. J. Daley, J. Richey, and C. Spellman. 1979. Flow cytometry analysis of murine B cell lymphoma differentiation. Immunol. Rev. 48: 197–243
  • Loken, M. R., V. O. Shah, K. L. Dattilio, and C. I. Civin. 1987. Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte development. Blood 70: 1316–1324
  • Uchida, J., Y. Lee, M. Hasegawa, et al. 2004. Mouse CD20 expression and function. Int. Immunol. 16: 119–129
  • Rastetter, W., A. Molina, and C. A. White. 2004. Rituximab: expanding role in therapy for lymphomas and autoimmune diseases. Annu. Rev. Med. 55: 477–503
  • Ahuja, A., S. M. Anderson, A. Khalil, and M. J. Shlomchik. 2008. Maintenance of the plasma cell pool is independent of memory B cells. Proc. Natl. Acad. Sci. U. S. A. 105: 4802–4807
  • Roll, P., A. Palanichamy, C. Kneitz, et al. 2006. Regeneration of B cell subsets after transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum. 54: 2377–2386
  • Campbell, I. K., M. J. Rich, R. J. Bischof, and J. A. Hamilton. 2000. The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J. Leukoc. Biol. 68: 144–150
  • Soto, H., P. Hevezi, R. B. Roth, et al. 2008. Gene array analysis comparison between rat collagen-induced arthritis and human rheumatoid arthritis. Scand. J. Immunol. 68: 43–57
  • Kazkaz, H., and D. Isenberg. 2004. Anti B cell therapy (rituximab) in the treatment of autoimmune diseases. Curr. Opin. Pharmacol. 4: 398–402
  • Coca, A., and I. Sanz. 2009. B cell depletion in lupus and Sjogren's syndrome: an update. Curr. Opin. Rheumatol. 21: 483–488
  • Prinz, J. C. 2003. The role of T cells in psoriasis. J. Eur. Acad. Dermatol. Venereol. 17: 257–270
  • Darabi, K., A. Y. Karulin, B. O. Boehm, et al. 2004. The third signal in T cell-mediated autoimmune disease? J. Immunol. 173: 92–99
  • Im, S. H., D. Barchan, P. K. Maiti, et al. 2001. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18. FASEB J. 15: 2140–2148
  • Davies, R. J., S. R. Sangle, N. P. Jordan, et al. 2013. Rituximab in the treatment of resistant lupus nephritis: therapy failure in rapidly progressive crescentic lupus nephritis. Lupus 22: 574–582
  • Reddy, V., D. Jayne, D. Close, and D. Isenberg. 2013. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res. Ther. 15: S2
  • Albert, D., J. Dunham, S. Khan, et al. 2008. Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythaematosus. Ann. Rheum. Dis. 67: 1724–1731
  • Eisenstein, M. 2012. Approval on a knife edge. Nat. Biotechnol. 30: 26–29
  • Scapini, P., Y. Hu, C. L. Chu, et al. 2010. Myeloid cells, BAFF, and IFN-gamma establish an inflammatory loop that exacerbates autoimmunity in Lyn-deficient mice. J. Exp. Med. 207: 1757–1773
  • Mackay, F., P. Schneider, P. Rennert, and J. Browning. 2003. BAFF AND APRIL: a tutorial on B cell survival. Annu. Rev. Immunol. 21: 231–264
  • Nardelli, B., O. Belvedere, V. Roschke, et al. 2001. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97: 198–204
  • Moore, P. A., O. Belvedere, A. Orr, et al. 1999. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285: 260–263
  • Liu, Y., and A. La Cava. 2012. Targeting BLyS in systemic lupus erythematosus. Recent Pat. Inflamm. Allergy Drug Discov. 6: 91–96
  • Stohl, W., and D. M. Hilbert. 2012. The discovery and development of belimumab: the anti-BLyS-lupus connection. Nat. Biotechnol. 30: 69–77
  • Levesque, M. C., and E. W. St Clair. 2008. B cell-directed therapies for autoimmune disease and correlates of disease response and relapse. J. Allergy Clin. Immunol. 121: 13–21; quiz 2–3
  • Chan, O. T., L. G. Hannum, A. M. Haberman, et al. 1999. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J. Exp. Med. 189: 1639–1648
  • Duddy, M. E., A. Alter, and A. Bar-Or. 2004. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J. Immunol. 172: 3422–3427
  • MacNeil, I. A., T. Suda, K. W. Moore, et al. 1990. IL-10, a novel growth cofactor for mature and immature T cells. J. Immunol. 145: 4167–4173
  • Zhong, X., W. Gao, N. Degauque, et al. 2007. Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur. J. Immunol. 37: 2400–2404
  • Cancro, M. P., and J. F. Kearney. 2004. B cell positive selection: road map to the primary repertoire? J. Immunol. 173: 15–19
  • LeBien, T. W., and T. F. Tedder. 2008. B lymphocytes: how they develop and function. Blood 112: 1570–1580
  • Coutinho, A., and G. Moller. 1975. Thymus-independent B-cell induction and paralysis. Adv. Immunol. 21: 113–236
  • Martin, F., and J. F. Kearney. 2002. Marginal-zone B cells. Nat. Rev. Immunol. 2: 323–335
  • Cerutti, A., M. Cols, and I. Puga. 2013. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13: 118–132
  • Muramatsu, M., K. Kinoshita, S. Fagarasan, et al. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553–563
  • Woof, J. M., and M. A. Kerr. 2004. IgA function–variations on a theme. Immunology 113: 175–177
  • Maul, R. W., and P. J. Gearhart. 2010. AID and somatic hypermutation. Adv. Immunol. 105: 159–191
  • Yoshida, T., H. Mei, T. Dorner, et al. 2010. Memory B and memory plasma cells. Immunol. Rev. 237: 117–139
  • Godin, I. E., J. A. Garcia-Porrero, A. Coutinho, et al. 1993. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364: 67–70
  • Montecino-Rodriguez, E., H. Leathers, and K. Dorshkind. 2006. Identification of a B-1 B cell-specified progenitor. Nat. Immunol. 7: 293–301
  • Zhou, Z. H., Y. Zhang, Y. F. Hu, et al. 2007. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe. 1: 51–61
  • Ochsenbein, A. F., T. Fehr, C. Lutz, et al. 1999. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286: 2156–2159
  • Boes, M., T. Schmidt, K. Linkemann, et al. 2000. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl. Acad. Sci. U.S.A. 97: 1184–1189
  • Baumgarth, N. 2011. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11: 34–46
  • Descatoire, M., J. C. Weill, C. A. Reynaud, and S. Weller. 2011. A human equivalent of mouse B-1 cells? J. Exp. Med. 208: 2563–2564
  • Griffin, D. O., N. E. Holodick, and T. L. Rothstein. 2011. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J. Exp. Med. 208: 67–80
  • Rothstein, T. L., D. O. Griffin, N. E. Holodick, et al. 2013. Human B-1 cells take the stage. Ann. N. Y. Acad. Sci. 1285: 97–114
  • Hever, A., R. B. Roth, P. Hevezi, et al. 2007. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc. Natl. Acad. Sci. U.S.A. 104: 12451–12456
  • Sinaii, N., S. D. Cleary, M. L. Ballweg, et al. 2002. High rates of autoimmune and endocrine disorders, fibromyalgia, chronic fatigue syndrome and atopic diseases among women with endometriosis: a survey analysis. Hum. Reprod. 17: 2715–2724
  • Bouaziz, J. D., K. Yanaba, and T. F. Tedder. 2008. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev. 224: 201–214
  • Iwata, Y., T. Matsushita, M. Horikawa, et al. 2011. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117: 530–541
  • Yanaba, K., J. D. Bouaziz, K. M. Haas, et al. 2008. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28: 639–650
  • Yoshizaki, A., T. Miyagaki, D. J. DiLillo, et al. 2012. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491: 264–268
  • Yanaba, K., J. D. Bouaziz, T. Matsushita, et al. 2009. The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 182: 7459–7472
  • Berthelot, J. M., C. Jamin, K. Amrouche, et al. 2013. Regulatory B cells play a key role in immune system balance. Joint Bone Spine 80: 18–22
  • Mauri, C., and A. Bosma. 2012. Immune regulatory function of B cells. Annu. Rev. Immunol. 30: 221–241
  • Blair, P. A., L. Y. Norena, F. Flores-Borja, et al. 2010. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32: 129–140
  • Duddy, M., M. Niino, F. Adatia, et al. 2007. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178: 6092–6099
  • Correale, J., M. Farez, and G. Razzitte. 2008. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann. Neurol. 64: 187–199
  • Tadmor, T., Y. Zhang, H. M. Cho, et al. 2011. The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model. Cancer Immunol. Immunother. 60: 609–619
  • Lund, F. E. 2008. Cytokine-producing B lymphocytes-key regulators of immunity. Curr. Opin. Immunol. 20: 332–338
  • Harris, D. P., L. Haynes, P. C. Sayles, et al. 2000. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 1: 475–482
  • de Goer de Herve, M. G., D. Durali, B. Dembele, et al. 2011. Interferon-alpha triggers B cell effector 1 (Be1) commitment. PLoS One 6: e19366
  • Harris, D. P., S. Goodrich, K. Mohrs, et al. 2005. Cutting edge: the development of IL-4-producing B cells (B effector 2 cells) is controlled by IL-4, IL-4 receptor alpha, and Th2 cells. J. Immunol. 175: 7103–7107
  • Bojarska-Junak, A., J. Rolinski, E. Wasik-Szczepaneko, et al. 2002. Intracellular tumor necrosis factor production by T- and B-cells in B-cell chronic lymphocytic leukemia. Haematologica 87: 490–499
  • Harris, R. J., A. R. Pettitt, C. Schmutz, et al. 2000. Granulocyte-macrophage colony-stimulating factor as an autocrine survival factor for mature normal and malignant B lymphocytes. J. Immunol. 164: 3887–3893
  • Rauch, P. J., A. Chudnovskiy, C. S. Robbins, et al. 2012. Innate response activator B cells protect against microbial sepsis. Science 335: 597–601
  • Robbins, C. S., and F. K. Swirski. 2012. Newly discovered innate response activator B cells: crucial responders against microbial sepsis. Expert Rev. Clin. Immunol. 8: 405–407
  • Bermejo, D. A., S. W. Jackson, M. Gorosito-Serran, et al. 2013. Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORgammat and Ahr that leads to IL-17 production by activated B cells. Nat. Immunol. 14: 514–522
  • Bafica, A., H. C. Santiago, R. Goldszmid, et al. 2006. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J. Immunol. 177: 3515–3519
  • Gea-Banacloche, J. C. 2010. Rituximab-associated infections. Semin. Hematol. 47: 187–198
  • Lutt, J. R., M. L. Pisculli, M. E. Weinblatt, et al. 2008. Severe nontuberculous mycobacterial infection in 2 patients receiving rituximab for refractory myositis. J. Rheumatol. 35: 1683–1685
  • Aksoy, S., H. Harputluoglu, S. Kilickap, et al. 2007. Rituximab-related viral infections in lymphoma patients. Leuk. Lymphoma 48: 1307–1312
  • Kolstad, A., H. Holte, A. Fossa, et al. 2007. Pneumocystis jirovecii pneumonia in B-cell lymphoma patients treated with the rituximab-CHOEP-14 regimen. Haematologica 92: 139–140
  • Krause, P. J., B. E. Gewurz, D. Hill, et al. 2008. Persistent and relapsing babesiosis in immunocompromised patients. Clin. Infect. Dis. 46: 370–376
  • Kelesidis, T., G. Daikos, D. Boumpas, and S. Tsiodras. 2011. Does rituximab increase the incidence of infectious complications? A narrative review. Int. J. Infect. Dis. 15: e2–e16
  • Weber, M. S., T. Prod'homme, J. C. Patarroyo, et al. 2010. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann. Neurol. 68: 369–383
  • Mann, M. K., K. Maresz, L. P. Shriver, et al. 2007. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J. Immunol. 178: 3447–3456
  • Fu, S., N. Zhang, A. C. Yopp, et al. 2004. TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. Am. J. Transplant. 4: 1614–1627
  • Chaudhry, A., R. M. Samstein, P. Treuting, et al. 2011. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34: 566–578
  • Lin, G., J. Wang, X. Lao, et al. 2012. Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J. Immunother. 35: 337–343
  • Sfikakis, P. P., V. L. Souliotis, K. G. Fragiadaki, et al. 2007. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin. Immunol. 123: 66–73
  • Lund, F. E., and T. D. Randall. 2010. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat. Rev. Immunol. 10: 236–247
  • Sun, J. B., S. Raghavan, A. Sjoling, et al. 2006. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+ and Foxp3-CD25- CD4+ regulatory T cells. J. Immunol. 177: 7634–7644
  • Sun, J. B., C. F. Flach, C. Czerkinsky, and J. Holmgren. 2008. B lymphocytes promote expansion of regulatory T cells in oral tolerance: powerful induction by antigen coupled to cholera toxin B subunit. J. Immunol. 181: 8278–8287
  • Bosma, A., A. Abdel-Gadir, D. A. Isenberg, et al. 2012. Lipid-antigen presentation by CD1d(+) B cells is essential for the maintenance of invariant natural killer T cells. Immunity 36: 477–490
  • Anolik, J. H., J. Barnard, T. Owen, et al. 2007. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 56: 3044–3056
  • Salinas, G. F., L. De Rycke, B. Barendregt, et al. 2013. Anti-TNF treatment blocks the induction of T cell-dependent humoral responses. Ann. Rheum. Dis. 72: 1037–1043
  • Rieckmann, P., J. M. Tuscano, and J. H. Kehrl. 1997. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in B-lymphocyte function. Methods 11: 128–132
  • Boussiotis, V. A., L. M. Nadler, J. L. Strominger, and A. E. Goldfeld. 1994. Tumor necrosis factor alpha is an autocrine growth factor for normal human B cells. Proc. Natl. Acad. Sci. U.S.A. 91: 7007–7011
  • Frasca, D., M. Romero, A. Diaz, et al. 2012. A molecular mechanism for TNF-alpha-mediated downregulation of B cell responses. J. Immunol. 188: 279–286
  • Yanaba, K., J. D. Bouaziz, T. Matsushita, et al. 2008. B-lymphocyte contributions to human autoimmune disease. Immunol. Rev. 223: 284–299
  • Dorner, T. 2006. Crossroads of B cell activation in autoimmunity: rationale of targeting B cells. J. Rheumatol. Suppl. 77: 3–11
  • Pers, J. O., C. Daridon, B. Bendaoud, et al. 2008. B-cell depletion and repopulation in autoimmune diseases. Clin. Rev. Allergy Immunol. 34: 50–55
  • Marino, E., and S. T. Grey. 2012. B cells as effectors and regulators of autoimmunity. Autoimmunity 45: 377–387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.