163
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Pemphigus vulgaris autoimmune globulin induces Src-dependent tyrosine-phosphorylation of plakophilin 3 and its detachment from desmoglein 3

, , &
Pages 134-140 | Received 09 Mar 2013, Accepted 09 Nov 2013, Published online: 16 Dec 2013

References

  • McGrath, J. A., J. R. McMillan, C. S. Shemanko, et al. (1997). Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nat. Genet. 17: 240–244
  • Cirillo, N. (2009). Pathophysiology of the desmosome. Research Signpost, Trivandrum, India. pp. 202
  • Hofmann, I., M. Casella, M. Schnolzer, et al. (2006). Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules. Mol. Biol. Cell. 17: 1388–1398
  • Cirillo, N., and S. S. Prime. (2009). Desmosomal interactome in keratinocytes: a systems biology approach leading to an understanding of the pathogenesis of skin disease. Cell. Mol. Life Sci. 66: 3517–3533
  • Sklyarova, T., S. Bonné, P. D'Hooge, et al. (2008). Plakophilin-3-deficient mice develop hair coat abnormalities and are prone to cutaneous inflammation. J. Invest. Dermatol. 128: 1375–1385
  • Chernyavsky, A. I., J. Arredondo, Y. Kitajima, et al. (2007). Desmoglein versus non-desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J. Biol. Chem. 282: 13804–13812
  • Lanza, A., M. Lanza, R. Santoro, et al. (2011). Deregulation of PERK in the autoimmune disease pemphigus vulgaris occurs via IgG-independent mechanisms. Br. J. Dermatol. 164: 336–343
  • Cirillo, N., E. Cozzani, M. Carrozzo, and S. A. Grando. (2012). Urban legends: pemphigus vulgaris. Oral Dis. 18: 442–458
  • Nguyen, V. T., J. Arredondo, A. I. Chernyavsky, et al. (2004). Pemphigus vulgaris IgG and methylprednisolone exhibit reciprocal effects on keratinocytes. J. Biol. Chem. 279: 2135–2146
  • Chernyavsky, A. I., J. Arredondo, T. Piser, et al. (2008). Differential coupling of M1 muscarinic and alpha7 nicotinic receptors to inhibition of pemphigus acantholysis. J. Biol. Chem. 283: 3401–3408
  • Cirillo N., M. Lanza, L. Rossiello, et al. (2007). Defining the involvement of proteinases in pemphigus vulgaris: evidence of matrix metalloproteinase-9 overexpression in experimental models of disease. J. Cell. Physiol. 212: 36–41
  • Cirillo, N., M. Lanza, F. Femiano, et al. (2007). If pemphigus vulgaris IgG are the cause of acantholysis, new IgG-independent mechanisms are the concause. J. Cell. Physiol. 212: 563–567
  • Cirillo, N., F. Gombos, and A. Lanza. (2007). Pemphigus vulgaris immunoglobulin G can recognize a 130 000 MW antigen other than desmoglein 3 on peripheral blood mononuclear cell surface. Immunology 121: 377–382
  • Boukamp, P., R. T. Petrussevska, D. Breitkreutz, et al. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell. Biol. 106: 761–771
  • Arredondo, J., A. I. Chernyavsky, A. Karaouni, and S. A. Grando. (2005). Novel mechanisms of target cell death and survival and of therapeutic action of IVIg in Pemphigus. Am. J. Pathol. 167: 1531–1544
  • Cirillo, N., M. Lanza, A. De Rosa, et al. (2008). The most widespread desmosomal cadherin, desmoglein 2, is a novel target of caspase 3-mediated apoptotic machinery. J. Cell. Biochem. 103: 598–606
  • Calautti, E., S. Cabodi, P. L. Stein, et al. (1998). Tyrosine phosphorylation and Src-family kinases control keratinocyte cell–cell adhesion. J. Cell. Biol. 141: 1449–1465
  • Jennings, J. M., D. K. Tucker, M. D. Kottke, et al. (2011). Desmosome disassembly in response to pemphigus vulgaris IgG occurs in distinct phases and can be reversed by expression of exogenous Dsg3. J. Invest. Dermatol. 131: 706–718
  • Caldelari, R., A. de Bruin, D. Baumann, et al. (2001). A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris. J. Cell. Biol. 153: 823–834
  • Munoz, W. A., M. Kloc, K. Cho, et al. (2012). Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. PLoS One 7: e34342
  • Khapare, N., S. T. Kundu, L. Sehgal, et al. (2012). Plakophilin3 loss leads to an increase in PRL3 levels promoting K8 dephosphorylation, which is required for transformation and metastasis. PLoS One 7: e38561
  • Parker F., F. Maurier, I. Delumeau, et al. (1996). A Ras-GTPase-activating protein SH3-domain-binding protein. Mol. Cell. Biol. l16: 2561–2569
  • Preiss, T., and Hentze, M. W. (2003). Starting the protein synthesis machine: eukaryotic translation initiation. Bioessays 25: 1201–1211
  • Gebauer, F., and Hentze, M. W. (2004). Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5: 827–835
  • Mamane, Y., Petroulakis, E., Rong, L., et al. (2004). eIF4E–from translation to transformation. Oncogene 23: 3172–3179
  • Richter, J. D., and N. Sonenberg. (2005). Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433: 477–480
  • Irvine, K., R. Stirling, D. Hume, and D. Kennedy. (2004). Rasputin, more promiscuous than ever: a review of G3BP. Int. J. Dev. Biol. 48: 1065–1077
  • Hansson, A., B. K. Bloor, Y. Haig, et al. (2001). Expression ofkeratins in normal, immortalized and malignant oral epithelia in organotypic culture. Oral Oncol. 37: 419–430
  • Bonné, S., B. Gilbert, M. Hatzfeld, et al. (2003). Defining desmosomal plakophilin-3 interactions. J. Cell. Biol. 161: 403–416
  • Cirillo, N., G. Campisi, F. Gombos, et al. (2008). Cleavage of desmoglein 3 can explain its depletion from keratinocytes in pemphigus vulgaris. Exp. Dermatol. 17: 858–863
  • Bystryn, J. C., and S. A. Grando. (2006). A novel explanation for acantholysis in pemphigus vulgaris: the basal cell shrinkage hypothesis. J. Am. Acad. Dermatol. 54: 513–516
  • Grando, S. A. (2012). Pemphigus autoimmunity: hypotheses and realities. Autoimmunity 45: 7–35
  • Dhandha, M. M., K. Seiffert-Sinha, and A. A. Sinha. (2012). Specific immunoglobulin isotypes correlate with disease activity, morphology, duration and HLA association in Pemphigus vulgaris. Autoimmunity 45: 516–526
  • Sinha, A. A. (2012). Constructing immunoprofiles to deconstruct disease complexity in pemphigus. Autoimmunity 45: 36–43
  • Cirillo, N., and B. A. Al-Jandan. (2013). Desmosomal adhesion and pemphigus vulgaris: the first half of the story. Cell Commun. Adhes. 20: 1–10
  • Gil, M. P., T. Modol, A. España, and M. J. López-Zabalza. (2012). Inhibition of FAK prevents blisterformation in the neonatal mouse model of pemphigus vulgaris. Exp. Dermatol. 21: 254–259
  • Ridanpaa, M., R. Fodde, and M. Kielman. (2001). Dynamic expression and nuclear accumulation of beta-cateninduring the development of hair follicle-derived structures. Mech. Dev. 109: 173–181
  • Izaguirre, M. F., D. Larrea, J. F. Adur, et al. (2010). Role of E-Cadherin in epithelial architecture maintenance. Cell. Commun. Adhes. 17: 1–12
  • Renou, J. P., B. Bierie, K. Miyoshi, et al. (2003). Identification of genes differentially expressed in mouse mammary epithelium transformed by an activated beta-catenin. Oncogene 22: 4594–4610

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.