516
Views
17
CrossRef citations to date
0
Altmetric
Review Article

The deubiquitinase A20 in immunopathology of autoimmune diseases

&
Pages 307-319 | Received 05 Jun 2013, Accepted 01 Mar 2014, Published online: 27 Mar 2014

References

  • Ahn, K. S., and B. B. Aggarwal. 2005. Transcription Factor NF-kB: A sensor for smoke and stress signals. Ann. New York Acad. Sci. 1056: 218–233
  • Shembade, N., and E. W. Harhaj. 2012. Regulation of NF-κB signaling by the A20 deubiquitinase. Cell Mol. Immunol. 9: 123–130
  • Sun, S. C. 2008. Deubiquitylation and regulation of the immune response. Nat. Rev. Immunol. 8: 501–511
  • Dixit, V. M., S. Green, V. Sarma, et al. 1990. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265: 2973–2978
  • Verstrepen, L., K. Verhelst, G. van Loo, et al. 2010. Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochem. Pharmacol. 80: 2009–2020
  • Lee, E. G., D. L. Boone, S. Chai, et al. 2000. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 289: 2350–2354
  • Komander, D., and D. Barford. 2008. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409: 77–85
  • Wertz, I. E., K. M. O'Rourke, H. Zhou, et al. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signaling. Nature. 430: 694–699
  • Bosanac, I., I. E. Wertz, B. Pan, et al. 2010. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol Cell. 40: 548–557
  • Tewari, M., F. W. Wolf, M. F. Seldin, et al. 1995. Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J. Immunol. 154: 1699–1706
  • O'Donnell, M. A., D. Legarda-Addison, P. Skountzos, et al. 2007. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr. Biol. 17: 418–424
  • Varfolomeev, E., T. Goncharov, A. V. Fedorova, et al. 2008. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J. Biol. Chem. 283: 24295–24299
  • Lu, T. T., M. Onizawa, G. E. Hammer, et al. 2013. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity. 38: 896–905
  • Li, L., N. Soetandyo, Q. Wang, and Y. Ye. 2009. The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim. Biophys. Acta. 1793: 346–353
  • Shembade, N., A. Ma, and E. W. Harhaj. 2010. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science. 327: 1135–1139
  • Skaug, B., J. Chen, F. Du, et al. 2011. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol. Cell. 44: 559–571
  • Mauro, C., F. Pacifico, A. Lavorgna, et al. 2006. ABIN-1 binds to NEMO/IKK gamma and co-operates with A20 in inhibiting NF-kappaB. J. Biol. Chem. 281: 18482–18488
  • Verhelst, K, I. Carpentier, M. Kreike, et al. 2012. A20 inhib LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31: 3845–3855
  • Heyninck, K., and R. Beyaert. 1999. The cytokine-inducible zinc finger protein A20 inhibits IL-1- induced NF-kappaB activation at the level of TRAF6. FEBS Lett. 442: 147–150
  • Wang, C., L. Deng, M. Hong, et al. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 412: 346–351
  • Shi, C. S., and J. H. Kehrl. 2010. Traf6 and A20 differentially regulate TLR4-induced autophagy by affecting the ubiquitination of Beclin 1. Autophagy. 6: 986–987
  • Inomata, M., S. Niida, K. Shibata, and T. Into. 2012. Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. Cell Mol. Life Sci. 69: 963–979
  • Bouma, G., and W. Strober. 2003. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3: 521–533
  • Hasegawa, M., Y. Fujimoto, P. C. Lucas, et al. 2008. A critical role of RICK/RIP2 poly-ubiquitination in Nod-induced NF-kappaB activation. EMBO J. 27: 373–383
  • Hitotsumatsu, O., R. C. Ahmad, R. Tavares, et al. 2008. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity. 28: 381–390
  • Coornaert, B., M. Baens, K. Heyninck, et al. 2008. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat. Immunol. 9: 263–271
  • Düwel, M., V. Welteke, A. Oeckinghaus, et al. 2009. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitinchains. J. Immunol. 182: 7718–7728
  • Chu, Y., J. C. Vahl, D. Kumar, et al. 2011. B cells lacking the tumor suppressor TNFAIP3/A20 display impaired differentiation, hyperactivation, cause inflammation and autoimmunity in aged mice. Blood. 117: 2227–2236
  • Ho, A. W., A. V. Garg, L. Monin, et al. 2013. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. PLoS One. 8: e70168
  • Garg, A. V., M. Ahmed, A. N. Vallejo, et al. 2013. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci. Signal. 6: ra44
  • Hutti, J. E., B. E. Turk, J. M. Asara, et al. 2007. IkappaB kinase beta phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-kappaB pathway. Mol. Cell Biol. 27: 7451–7461
  • Shembade, N., R. Pujari, N. S. Harhaj, et al. 2011. The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat. Immunol. 12: 834–843
  • Lawrence, T., M. Bebien, G. Y. Liu, et al. 2005. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 434: 1138–1143
  • Li, Q., Q. Lu, V. Bottero, et al. 2005. Enhanced NF-kappaB activation and cellular function in macrophages lacking IkappaB kinase 1 (IKK1). Proc. Natl. Acad. Sci. USA. 102: 12425–12430
  • Shirdel, E. A., W. Xie, T. W. Mak, and I. Jurisica. 2011. Navigating the micronome–using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One. 6: e17429
  • Zhao, J. L., D. S. Rao, M. P. Boldin, et al. 2011. NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl. Acad. Sci. USA. 108: 9184–9189
  • Lu, Z., Y. Li, A. Takwi, et al. 2011. miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 30: 57–67
  • Song, L., C. Lin, H. Gong, et al. 2013. miR-486 sustains NF-κB activity by disrupting multiple NF-κB-negative feedback loops. Cell. Res. 23: 274–289
  • Gantier, M. P., H. J. Stunden, C. E. McCoy, et al. 2012. A miR-19 regulon that controls NF-κB signaling. Nucl. Acids Res. 40: 8048–8058
  • Kim, S. W., K. Ramasamy, H. Bouamar, et al. 2012. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Cell Mol. Immunol. 9: 123–130
  • Trenkmann, M., M. Brock, R. E. Gay, et al. 2012. The TNFα-induced miR-18a activates rheumatoid arthritis synovial fibroblasts through a feedback loop in NF-κB signaling. Arth. Rheum. doi: 10.1002
  • Wang, C. M., Y. Wang, C. G. Fan, et al. 2011. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus related hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 411: 586–592
  • Kulathu, Y., F. J. Garcia, T. E. Mevissen, et al. 2013. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun. 4: 1569
  • Lin, X., and D. Wang. 2004. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin. Immunol. 16: 429–435
  • De Valck, D., K. Heyninck, W. Van Criekinge, et al. 1997. A20 inhibits NF- kappaB activation independently of binding to 14-3-3 proteins. Biochem. Biophys. Res. Commun. 238: 590–594
  • Vincenz, C., and V. M. Dixit. 1996. 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J. Biol. Chem. 271: 20029–20034
  • Musone, S. L., K. E. Taylor, J. Nititham, et al. 2011. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Gen. Immun. 12: 176–182
  • Nair, R. P., K. C. Duffin, C. Helms, et al. 2009. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41: 199–204
  • Graham, R. R., C. Cotsapas, L. Davies, et al. 2008. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40: 1059–1061
  • Lodolce, J. P., L. E. Kolodziej, and L. Rhee. 2010. African derived genetic polymorphisms in TNFAIP3 mediate risk for autoimmunity. J. Immunol. 184: 7001–7009
  • Kawasaki, A., I. Ito, S. Ito, et al. 2010. Association of TNFAIP3 polymorphism with susceptibility to systemic lupus erythematosus in a Japanese population. J. Biomed. Biotechnol. 2075–2078
  • Musone, S. L., K. E. Taylor, T. T. Lu, et al. 2008. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat. Genet. 40: 1062–1064
  • Adrianto, I., F. Wen, A. Templeton, et al. 2011. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat. Genet. 43: 253–258
  • Thomson, W., A. Barton, X. Ke, et al. 2007. Rheumatoid arthritis association at 6q23. Nat. Genet. 39: 1431–1433
  • Hughes, L. B., R. J. Reynolds, E. E. Brown, et al. 2010. Most common single-nucleotide polymorphisms associated with rheumatoid arthritis in persons of European ancestry confer risk of rheumatoid arthritis in African Americans. Arthritis Rheum. 62: 3547–3553
  • Plenge, R. M., C. Cotsapas, L. Davies, et al. 2007. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39: 1477–1482
  • Zhernakova, A., E. A. Stahl, G. Trynka, et al. 2011. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7: e1002004
  • Bowes, J., R. Lawrence, S. Eyre, et al. 2010. Rare variation at the TNFAIP3 locus and susceptibility to rheumatoid arthritis. Hum. Genet. 128: 627–633
  • Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14 000 cases of seven common diseases and 3,000 shared controls. Nature. 447: 661–678
  • Fung, E. Y., D. J. Smyth, J. M. Howson, et al. 2009. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes. Immun. 10: 188–191
  • Chanudet, E., Y. Huang, K. Ichimura, et al. 2010. A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia. 24: 483–487
  • Jiang, X., H. Tian, Y. Fan, et al. 2012. Expression of tumor necrosis factor alpha-induced protein 3 mRNA in peripheral blood mononuclear cells negatively correlates with disease severity in psoriasis vulgaris. Clin. Vaccine Immunol. 19: 1938–1942
  • Elsby, L. M., G. Orozco, J. Denton, et al. 2010. Functional evaluation of TNFAIP3 (A20) in rheumatoid arthritis. Clin. Exp. Rheumatol. 28: 708–714
  • Maxwell, J. R., I. R. Gowers, K. P. Kuet, et al. 2012. Expression of the autoimmunity associated TNFAIP3 is increased in rheumatoid arthritis but does not differ according to genotype at 6q23. Rheumatology. 51: 1514–1515
  • Arsenescu, R., M. E. Bruno, E. W. Rogier, et al. 2008. Signature biomarkers in Crohn's disease: toward a molecular classification. Muc. Immunol. 1: 399–411
  • Zheng, C. F., and Y. Huang. 2011. Expression of zinc finger protein A20 in pediatric inflammatory bowel disease. Zhonghua Er Ke Za Zhi. 49: 261–265
  • Abreu, M. T. 2010. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10: 131–144
  • Wang, J., Y. Guner, Y. Ouyang, et al. 2009. Ubiquitin-editing enzyme A20 promotes tolerance to lipopolysaccharide in enterocytes. J. Immunol. 183: 1384–1392
  • Turer, E. E., R. M. Tavares, E. Mortier, et al. 2008. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J. Exp. Med. 205: 451–464
  • Vereecke, L., M. Sze, C. Mc Guire, et al. 2010. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J. Exp. Med. 207: 1513–1523
  • Niess, J. H. 2008. Role of mucosal dendritic cells in inflammatory bowel disease. W J. Gastrol. 14: 5138–5148
  • Hammer, G. E., E. E. Turer, K. E. Taylor, et al. 2011. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat. Immunol. 12: 1184–1193
  • Kolodziej, L. E., J. P. Lodolce, J. E. Chang, et al. 2011. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions. PLoS One. 6: e26352. doi: 10.1371/journal.pone.0026352
  • Lippens, S., S. Lefebvre, B. Gilbert, et al. 2011. Keratinocyte-specific ablation of the NF-κB regulatory protein A20 (TNFAIP3) reveals a role in the control of epidermal homeostasis. Cell Death Differ. 18: 1845–1853
  • Matmati, M., P. Jacques, J. Maelfait, et al. 2011. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 43: 908–912
  • Kool, M., G. van Loo, W. Waelput, et al. 2011. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity. 35: 82–96
  • Tavares, R. M., E. E. Turer, C. L. Liu, et al. 2010. The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity. 33: 181–191
  • Igarashi, H., A. Yahagi, T. Saika, et al. 2012. A pro-inflammatory role for A20 and ABIN family proteins in human fibroblast-like synoviocytes in rheumatoid arthritis. Immunol. Lett. 141: 246–253
  • Yoon, H. K., H. S. Byun, H. Lee, et al. 2013. Intron-derived aberrant splicing of A20 transcript in rheumatoid arthritis. Rheumatology (Oxford). 52: 427–437
  • Verstrepen, L., I. Carpentier, K. Verhelst, and R. Beyaert. 2009. ABINs: A20 binding inhibitors of NF- kappa B and apoptosis signaling. Biochem. Pharmacol. 78: 105–114
  • Gateva, V., J. K. Sandling, G. Hom, et al. 2009. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genetics. 41: 1228–1233
  • Kawasaki, A., S. Ito, H. Furukawa, et al. 2010. Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. Arthr. Res. Ther. 12: R174
  • Callahan, J. A., G. E. Hammer, A. Agelides, et al. 2013. ABIN-1 protects against psoriasis by restricting MyD88 signals in dendritic cells. J. Immunol. 191: 535–539
  • Zhou, J., R. Wu, A. A. High, et al. 2011. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease. Proc. Natl. Acad. Sci. U S A. 108: E998–E1006
  • Nanda, S. K., R. K. Venigalla, A. Ordureau, et al. 2011. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J. Exp. Med. 208: 1215–1228
  • Iha, H., J. M. Peloponese, L. Verstrepen, et al. 2008. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J. 27: 629–641
  • Mc Guire, C., P. Wieghofer, L. Elton, et al. 2013. Paracaspase MALT1 deficiency protects mice from autoimmune-mediated demyelination. J. Immunol. 190: 2896–2903
  • Zhao, X., Y. Tang, B. Qu, et al. 2010. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum. 62: 3425–3435
  • Sonkoly, E., T. Wei, P. C. Janson, et al. 2007. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2: e610
  • Mestdagh, P., A. K. Bostrom, F. Impens, et al. 2010. The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol. Cell. 40: 762–773
  • Schmitt, M. J., C. Margue, I. Behrmann, and S. Kreis. 2013. MiRNA-29: a microRNA family with tumor-suppressing and immune modulating properties. Curr. Mol. Med. 13: 572–585
  • Lindberg, R. L., F. Hoffmann, M. Mehling, et al. 2010. Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur. J. Immunol. 40: 888–898
  • Tufekci, K. U., M. G. Oner, S. Genc, and K. Genc. 2011. MicroRNAs and multiple sclerosis. Autoimmun. Dis. 2011: 807426
  • Cox, M. B., M. J. Cairns, K. S. Gandhi, et al. 2010. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One. 5: e12132
  • Nenci, A., C. Becker, A. Wullaert, et al. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 446: 557–561
  • Piao, J. H., M. Hasegawa, B. Heissig, et al. 2011. Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease. J. Biol. Chem. 286: 17879–17888
  • Lin, W. J., Y. W. Su, Y. C. Lu, et al. 2011. Crucial role for TNF receptor-associated factor 2 (TRAF2) in regulating NFκB2 signaling that contributes to autoimmunity. Proc. Natl. Acad. Sci. USA. 108: 18354–18359
  • Shen, J., Y. Qiao, Z. Ran, and T. Wang. 2013. Different activation of TRAF4 and TRAF6 in inflammatory bowel disease. Mediators Inflamm. 647936
  • Li, J., J. Tian, Y. Ma, et al. 2012. Association of RIP2 gene polymorphisms and systemic lupus erythematosus in a Chinese population. Mutagenesis. 27: 319–322
  • Negroni, A., L. Stronati, M. Pierdomenico, et al. 2009. Activation of NOD2-mediated intestinal pathway in a pediatric population with Crohn's disease. Inflamm. Bowel Dis. 15: 1145–1154
  • Hollenbach, E., M. Vieth, A. Roessner, et al. 2005. Inhibition of RICK/nuclear factor-kappaB and p38 signaling attenuates the inflammatory response in a murine model of Crohn disease. J. Biol. Chem. 280: 14981–14988
  • Shaw, P. J., M. J. Barr, J. R. Lukens, et al. 2011. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity. 34: 75–84
  • Hymowitz, S. G., and I. E. Wertz. 2010. A20: from ubiquitin editing to tumor suppression. Nat. Rev. Cancer. 10: 332–341
  • Ungerbäck, J., D. Belenki, A. Jawad ul-Hassan, et al. 2012. Genetic variation and alterations of genes involved in NF-κB/TNFAIP3 and NLRP3 inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis. 33: 2126–2134
  • Triantafillidis, J. K., G. Nasioulas, and P. A. Kosmidis. 2009. Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res. 29: 2727–2737
  • Shao, L., S. Oshima, B. Duong, et al. 2013. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis. PLoS One. 8: e62223
  • Tejasvi, T., P. E. Stuart, V. Chandran, et al. 2012. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J. Invest. Dermatol. 132: 593–600
  • Hah, Y. S., Y. R. Lee, J. S. Jun, et al. 2010. A20 suppresses inflammatory responses and bone destruction in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis. Arthritis Rheum. 62: 2313–2321
  • Yu, L.Y., B. Lin, Z. L. Zhang, and L. H. Guo. 2004. Direct transfer of A20 gene into pancreas protected mice from streptozotocin-induced diabetes. Acta Pharmacol. Sin. 25: 721–726
  • Grey, S. T., C. Longo, T. Shukri, et al. 2003. Genetic engineering of a suboptimal islet graft with A20 preserves beta cell mass and function. J. Immunol. 170: 6250–6256
  • Scallon, B., A. Cai, N. Solowski, et al. 2002. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J. Pharmacol. Exp. Therap. 301: 418–426
  • Hage, C. A., K. L. Wood, H. T. Winer-Muram, et al. 2003. Pulmonary cryptococcosis after initiation of anti-tumor necrosis factor-alpha therapy. Chest. 37: 838–840
  • Gardam, M.A., E. C. Keystone, R. Menzies, et al. 2003. Anti-tumor necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Inf. Dis. 3: 148–55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.