144
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Polymorphisms of the TNFAIP3 region and Graves' disease

, , , , , , , , & show all
Pages 459-465 | Received 04 Mar 2013, Accepted 08 Apr 2014, Published online: 06 May 2014

References

  • Tomer, Y., and T. F. Davies. 2003. Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr. Rev. 24: 694–717
  • Ban, Y., T. Tozaki, M. Taniyama, et al. Multiple SNPs in intron 41 of thyroglobulin gene are associated with autoimmune thyroid disease in the Japanese population. PLoS One 7: e37501
  • Maierhaba, M., J. A. Zhang, Z. Y. Yu, et al. 2008. Association of the thyroglobulin gene polymorphism with autoimmune thyroid disease in Chinese population. Endocrine 33: 294–299
  • Hsiao, J. Y., M. C. Hsieh, C. T. Hsiao, et al. 2008. Association of CD40 and thyroglobulin genes with later-onset Graves' disease in Taiwanese patients. Eur. J. Endocrinol. 159: 617–621
  • Liu, L., H. Q. Wu, Q. Wang, et al. 2012. Association between thyroid stimulating hormone receptor gene intron polymorphisms and autoimmune thyroid disease in a Chinese Han population. Endocr. J. 59: 717–723
  • Brand, O. J., J. C. Barrett, M. J. Simmonds, et al. 2009. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves' disease. Hum. Mol. Genet. 18: 1704–1713
  • Zeitlin, A. A., J. M. Heward, P. R. Newby, et al. 2008. Analysis of HLA class II genes in Hashimoto's thyroiditis reveals differences compared to Graves' disease. Genes Immun. 9: 358–363
  • Cho, W. K., M. H. Jung, E. J. Choi, et al. Association of HLA alleles with autoimmune thyroid disease in Korean children. Horm. Res. Paediatr. 76: 328–334
  • Kavvoura, F. K., T. Akamizu, T. Awata, et al. 2007. Cytotoxic T-lymphocyte associated antigen 4 gene polymorphisms and autoimmune thyroid disease: a meta-analysis. J. Clin. Endocrinol. Metab. 92: 3162–3170
  • Zhao, S. X., C. M. Pan, H. M. Cao, et al. Association of the CTLA4 gene with Graves' disease in the Chinese Han population. PLoS One 5: e9821
  • Kalantari, T., H. Mostafavi, A. M. Pezeshki, et al. 2003. Exon-1 polymorphism of ctla-4 gene in Iranian patients with Graves' disease. Autoimmunity 36: 313–316
  • Ban, Y., T. Tozaki, M. Taniyama, and M. Tomita. 2005. Association of a CTLA-4 3′ untranslated region (CT60) single nucleotide polymorphism with autoimmune thyroid disease in the Japanese population. Autoimmunity 38: 151–153
  • Heward, J. M., O. J. Brand, J. C. Barrett, et al. 2007. Association of PTPN22 haplotypes with Graves' disease. J. Clin. Endocrinol. Metab. 92: 685–690
  • Chung, S. A., and L. A. Criswell. 2007. PTPN22: its role in SLE and autoimmunity. Autoimmunity 40: 582–590
  • Li, M., H. Sun, S. Liu, et al. CD40 C/T-1 polymorphism plays different roles in Graves' disease and Hashimoto's thyroiditis: a meta-analysis. Endocr. J. 59: 1041–1050
  • Ban, Y., T. Tozaki, M. Taniyama, and M. Tomita. 2006. Association of a C/T single-nucleotide polymorphism in the 5′ untranslated region of the CD40 gene with Graves' disease in Japanese. Thyroid 16: 443–446
  • Yan, N., Y. L. Yu, J. Yang, et al. 2012. Association of interleukin-17A and -17F gene single-nucleotide polymorphisms with autoimmune thyroid diseases. Autoimmunity 45: 533–539
  • Gu, L. Q., W. Zhu, S. X. Zhao, et al. 2010. Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves' disease. Clin. Endocrinol. (Oxf) 72: 248–255
  • Beyaert, R., K. Heyninck, and S. Van Huffel. 2000. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem. Pharmacol. 60: 1143–1151
  • Heyninck, K., and R. Beyaert. 2005. A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem. Sci. 30: 1–4
  • Lee, E. G., D. L. Boone, S. Chai, et al. 2000. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289: 2350–2354
  • Bowes, J., R. Lawrence, S. Eyre, et al. 2010. Rare variation at the TNFAIP3 locus and susceptibility to rheumatoid arthritis. Hum. Genet. 128: 627–633
  • Dieguez-Gonzalez, R., M. Calaza, E. Perez-Pampin, et al. 2009. Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-kappaB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility. Arthritis Res. Ther. 11: R42 . doi:10.1186/ar2650
  • Orozco, G., A. Hinks, S. Eyre, et al. 2009. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Hum. Mol. Genet. 18: 2693–2699
  • Wang, K., R. Baldassano, H. Zhang, et al. 2010. Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum. Mol. Genet. 19: 2059–2067
  • Musone, S. L., K. E. Taylor, T. T. Lu, et al. 2008. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat. Genet. 40: 1062–1064
  • Graham, R. R., C. Cotsapas, L. Davies, et al. 2008. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40: 1059–1061
  • Dieude, P., M. Guedj, J. Wipff, et al. 2010. Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann. Rheum. Dis. 69: 1958–1964
  • Vereecke, L., R. Beyaert, and G. van Loo. 2009. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30: 383–391
  • Chu, X., C. M. Pan, S. X. Zhao, et al. A genome-wide association study identifies two new risk loci for Graves' disease. Nat. Genet. 43: 897–901
  • Musone, S. L., K. E. Taylor, J. Nititham, et al. 2011. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun. 12: 176–182
  • Verstrepen, L., K. Verhelst, G. van Loo, et al. 2010. Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochem. Pharmacol. 80: 2009–2020
  • Wertz, I. E., K. M. O'Rourke, H. Zhou, et al. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430: 694–699

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.