449
Views
67
CrossRef citations to date
0
Altmetric
Review Article

MicroRNAs in lupus

, &
Pages 272-285 | Received 11 Apr 2014, Accepted 14 Apr 2014, Published online: 15 May 2014

References

  • Tsokos, G. C. 2011. Systemic lupus erythematosus. N. Engl. J. Med. 365: 2110–2121
  • Zan, H., J. Zhang, S. Ardeshna, et al. 2009. Lupus-prone MRL/Faslpr/lpr mice display increased AID expression and extensive DNA lesions, comprising deletions and insertions, in the immunoglobulin locus: concurrent upregulation of somatic hypermutation and class switch DNA recombination. Autoimmunity. 42: 89–103
  • White, C. A., J. Seth Hawkins, E. J. Pone, et al. 2011. AID dysregulation in lupus-prone MRL/Faslpr/lpr mice increases class switch DNA recombination and promotes interchromosomal c-Myc/IgH loci translocations: modulation by HoxC4. Autoimmunity. 44: 585–598
  • Xu, Z., H. Zan, E. J. Pone, et al. 2012. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 12: 517–531
  • Li, G., H. Zan, Z. Xu, and P. Casali. 2013. Epigenetics of the antibody response. Trends Immunol. 34: 460–470
  • Li, G., C. A. White, T. Lam, et al. 2013. Combinatorial H3K9acS10ph histone modification in IgH locus S regions targets 14-3-3 adaptors and AID to specify antibody class-switch DNA recombination. Cell Rep. 5: 702–714
  • Crow, M. K. 2008. Collaboration, genetic associations, and lupus erythematosus. N. Engl. J. Med. 358: 956–961
  • Manolio, T. A., F. S. Collins, N. J. Cox, et al. 2009. Finding the missing heritability of complex diseases. Nature. 461: 747–753
  • Flesher, D. L., X. Sun, T. W. Behrens, et al. 2010. Recent advances in the genetics of systemic lupus erythematosus. Expert Rev. Clin. Immunol. 6: 461–479
  • Garcia, B. A., S. A. Busby, J. Shabanowitz, et al. 2005. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition. J. Proteome Res. 4: 2032–2042
  • Ballestar, E. 2011. Epigenetic alterations in autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 7: 263–271
  • Pan, Y., and A. H. Sawalha. 2009. Epigenetic regulation and the pathogenesis of systemic lupus erythematosus. Trans. Res. 153: 4–10
  • Hedrich, C. M., and G. C. Tsokos. 2011. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol. Med. 17: 714–724
  • Hughes, T., and A. H. Sawalha. 2011. The role of epigenetic variation in the pathogenesis of systemic lupus erythematosus. Arthritis Res. Ther. 13: 241–211
  • Javierre, B. M., A. F. Fernandez, J. Richter, et al. 2010. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20: 170–179
  • Xiao, C., and K. Rajewsky. 2009. MicroRNA control in the immune system: basic principles. Cell. 136: 26–36
  • Xiao, C., L. Srinivasan, D. P. Calado, et al. 2008. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 9: 405–414
  • O'Connell, R. M., D. S. Rao, A. A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10: 111–122
  • Boldin, M. P., K. D. Taganov, D. S. Rao, et al. 2011. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208: 1189–1201
  • Zhu, S., W. Pan, X. Song, et al. 2012. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat. Med. 18: 1077–1086
  • Esteller, M. 2011. Non-coding RNAs in human disease. Nat. Rev. Genet. 12: 861–874
  • Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116: 281–297
  • Lindsay, M. A. 2008. MicroRNAs and the immune response. Trends Immunol. 29: 343–351
  • Seitz, H., N. Youngson, S. P. Lin, et al. 2003. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat. Genet. 34: 261–262
  • Ruegger, S., and H. Grosshans. 2012. MicroRNA turnover: when, how, and why. Trends Biochem. Sci. 37: 436–446
  • Odegard, V. H., S. T. Kim, S. M. Anderson, et al. 2005. Histone modifications associated with somatic hypermutation. Immunity. 23: 101–110
  • Jolly, C. J., and M. S. Neuberger. 2001. Somatic hypermutation of immunoglobulin kappa transgenes: association of mutability with demethylation. Immunol. Cell Biol. 79: 18–22
  • Fraenkel, S., R. Mostoslavsky, T. I. Novobrantseva, et al. 2007. Allelic ‘choice’ governs somatic hypermutation in vivo at the immunoglobulin kappa-chain locus. Nat. Immunol. 8: 715–722
  • Dorsett, Y., K. M. McBride, M. Jankovic, et al. 2008. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 28: 630–638
  • Teng, G., P. Hakimpour, P. Landgraf, et al. 2008. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 28: 621–629
  • de Yébenes, V. G., L. Belver, D. G. Pisano, et al. 2008. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205: 2199–2206
  • Wang, L., E. F. de Zoeten, M. I. Greene, and W. W. Hancock. 2009. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat. Rev. Drug Discov. 8: 969–981
  • Kuchen, S., W. Resch, A. Yamane, et al. 2010. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity. 32: 828–839
  • de Yebenes, V. G., N. Bartolome-Izquierdo, and A. R. Ramiro. 2013. Regulation of B-cell development and function by microRNAs. Immunol. Rev. 253: 25–39
  • Sato, F., S. Tsuchiya, S. J. Meltzer, and K. Shimizu. 2011. MicroRNAs and epigenetics. FEBS J. 278: 1598–1609
  • Klein, U., Y. Tu, G. A. Stolovitzky, et al. 2003. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA. 100: 2639–2644
  • Bhattacharya, D., M. T. Cheah, C. B. Franco, et al. 2007. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation. J. Immunol. 179: 6808–6819
  • Zhang, J., D. D. Jima, C. Jacobs, et al. 2009. Patterns of microRNA expression characterize stages of human B-cell differentiation. Blood. 113: 4586–4594
  • Winter, J., S. Jung, S. Keller, et al. 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11: 228–234
  • Lau, N. C., L. P. Lim, E. G. Weinstein, and D. P. Bartel. 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294: 858–862
  • Lagos-Quintana, M., R. Rauhut, W. Lendeckel, and T. Tuschl. 2001. Identification of novel genes coding for small expressed RNAs. Science. 294: 853–858
  • Lee, R. C., and V. Ambros. 2001. An extensive class of small RNAs in Caenorhabditis elegans. Science. 294: 862–864
  • Gregory, R. I., K.-P. Yan, G. Amuthan, et al. 2004. The microprocessor complex mediates the genesis of microRNAs. Nature. 432: 235–240
  • Okada, C., E. Yamashita, S. J. Lee, et al. 2009. A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 326: 1275–1279
  • Brodersen, P., and O. Voinnet. 2009. Revisiting the principles of microRNA target recognition and mode of action. Nat. Rev. Mol. Cell Biol. 10: 141–148
  • Miyoshi, K., T. Miyoshi, and H. Siomi. 2010. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol. Genet. Genomics. 284: 95–103
  • Okamura, K., J. W. Hagen, H. Duan, et al. 2007. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 130: 89–100
  • Ruby, J. G., C. H. Jan, and D. P. Bartel. 2007. Intronic microRNA precursors that bypass Drosha processing. Nature. 448: 83–86
  • Yang, J. S., and E. C. Lai. 2011. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell. 43: 892–903
  • Havens, M. A., A. A. Reich, D. M. Duelli, and M. L. Hastings. 2012. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res. 40: 4626–4640
  • Cheloufi, S., C. O. Dos Santos, M. M. Chong, and G. J. Hannon. 2010. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 465: 584–589
  • Yang, J. S., and E. C. Lai. 2010. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle. 9: 4455–4460
  • Yang, J. S., T. Maurin, N. Robine, et al. 2010. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl Acad. Sci. USA. 107: 15163–15168
  • Cifuentes, D., H. Xue, D. W. Taylor, et al. 2010. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science. 328: 1694–1698
  • Fernando, T. R., N. I. Rodriguez-Malave, and D. S. Rao. 2012. MicroRNAs in B cell development and malignancy. J. Hematol. Oncol. 5: 7 . doi: 10.1186/1756-8722-5-7
  • Finnegan, E. F., and A. E. Pasquinelli. 2013. MicroRNA biogenesis: regulating the regulators. Crit. Rev. Biochem. Mol. Biol. 48: 51–68
  • Slezak-Prochazka, I., S. Durmus, B. J. Kroesen, and A. van den Berg. 2010. MicroRNAs, macrocontrol: regulation of miRNA processing. RNA. 16: 1087–1095
  • Bail, S., M. Swerdel, H. Liu, et al. 2010. Differential regulation of microRNA stability. RNA. 16: 1032–1039
  • van Kouwenhove, M., M. Kedde, and R. Agami. 2011. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat. Rev. Cancer. 11: 644–656
  • Baumjohann, D., and K. M. Ansel. 2013. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat. Rev. Immunol. 13: 666–678
  • Ansel, K. M. 2013. RNA regulation of the immune system. Immunol. Rev. 253: 5–11
  • Danger, R., F. Braza, M. Giral, et al. 2014. MicroRNAs, major players in B cells homeostasis and function. Front. Immunol. 5: 98
  • Schatz, D. G., and Y. Ji. 2011. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11: 251–263
  • Garraud, O., G. Borhis, G. Badr, et al. 2012. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunol. 13: 63
  • Pillai, S., and A. Cariappa. 2009. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9: 767–777
  • Koralov, S. B., S. A. Muljo, G. R. Galler, et al. 2008. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 132: 860–874
  • Ventura, A., A. G. Young, M. M. Winslow, et al. 2008. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 132: 875–886
  • Rao, D. S., R. M. O'Connell, A. A. Chaudhuri, et al. 2010. MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity. 33: 48–59
  • Xiao, C., D. P. Calado, G. Galler, et al. 2007. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 131: 146–159
  • Belver, L., V. G. de Yébenes, and A. R. Ramiro. 2010. MicroRNAs prevent the generation of autoreactive antibodies. Immunity. 33: 713–722
  • Xu, S., K. Guo, Q. Zeng, et al. 2012. The RNase III enzyme Dicer is essential for germinal center B-cell formation. Blood. 119: 767–776
  • O'Connell, R. M., A. A. Chaudhuri, D. S. Rao, and D. Baltimore. 2009. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. USA. 106: 7113–7118
  • Casali, P., and H. Zan. 2004. Class switching and Myc translocation: how does DNA break? Nat. Immunol. 5: 1101–1103
  • Casali, P., Z. Pal, Z. Xu, and H. Zan. 2006. DNA repair in antibody somatic hypermutation. Trends Immunol. 27: 313–321
  • Zan, H., C. A. White, L. M. Thomas, et al. 2012. Rev1 recruits ung to switch regions and enhances du glycosylation for immunoglobulin class switch DNA recombination. Cell Rep. 2: 1220–1232
  • Zan, H., and P. Casali. 2013. Regulation of Aicda expression and AID activity. Autoimmunity. 46: 83–101
  • Basso, K., C. Schneider, Q. Shen, et al. 2012. BCL6 positively regulates AID and germinal center gene expression via repression of miR-155. J. Exp. Med. 209: 2455–2465
  • Borchert, G. M., N. W. Holton, and E. D. Larson. 2011. Repression of human activation induced cytidine deaminase by miR-93 and miR-155. BMC Cancer. 10: 347
  • Mok, Y., V. Schwierzeck, D. C. Thomas, et al. 2013. MiR-210 is induced by Oct-2, regulates B cells, and inhibits autoantibody production. J. Immunol. 191: 3037–3048
  • Baumjohann, D., and K. M. Ansel. 2014. MicroRNA regulation of the germinal center response. Curr. Opin. Immunol. 28C: 6–11
  • Malumbres, R., K. A. Sarosiek, E. Cubedo, et al. 2009. Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood. 113: 3754–3764
  • Gururajan, M., C. L. Haga, S. Das, et al. 2010. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int. Immunol. 22: 583–592
  • Chaudhuri, A. A., A. Y. So, N. Sinha, et al. 2011. MicroRNA-125b potentiates macrophage activation. J. Immunol. 187: 5062–5068
  • Muljo, S. A., K. M. Ansel, C. Kanellopoulou, et al. 2005. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202: 261–269
  • Cobb, B. S., A. Hertweck, J. Smith, et al. 2006. A role for Dicer in immune regulation. J. Exp. Med. 203: 2519–2527
  • Liston, A., L. F. Lu, D. O'Carroll, et al. 2008. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205: 1993–2004
  • Divekar, A. A., S. Dubey, P. R. Gangalum, and R. R. Singh. 2011. Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J. Immunol. 186: 924–930
  • Zhou, X., L. T. Jeker, B. T. Fife, et al. 2008. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205: 1983–1991
  • Lu, L. F., M. P. Boldin, A. Chaudhry, et al. 2010. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 142: 914–929
  • Chan, E. K., A. Ceribelli, and M. Satoh. 2013. MicroRNA-146a in autoimmunity and innate immune responses. Ann. Rheum. Dis. 72 Suppl 2: ii90–ii95
  • So, A. Y., J. L. Zhao, and D. Baltimore. 2013. The Yin and Yang of microRNAs: leukemia and immunity. Immunol. Rev. 253: 129–145
  • Liang, D., and N. Shen. 2012. MicroRNA involvement in lupus: the beginning of a new tale. Curr. Opin. Rheumatol. 24: 489–498
  • Ding, S., Y. Liang, M. Zhao, et al. 2012. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum. 64: 2953–2963
  • Amarilyo, G., and A. La Cava. 2012. miRNA in systemic lupus erythematosus. Clin. Immunol. 144: 26–31
  • Dai, Y., Y. S. Huang, M. Tang, et al. 2007. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 16: 939–946
  • Te, J. L., I. M. Dozmorov, J. M. Guthridge, et al. 2010. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 5: e10344
  • Dai, R., Y. Zhang, D. Khan, et al. 2010. Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One. 5: e14302
  • Stagakis, E., G. Bertsias, P. Verginis, et al. 2011. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann. Rheum. Dis. 70: 1496–1506
  • Löfgren, S. E., J. Frostegård, L. Truedsson, et al. 2012. Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes Immun. 13: 268–274
  • Shen, N., D. Liang, Y. Tang, et al. 2012. MicroRNAs-novel regulators of systemic lupus erythematosus pathogenesis. Nat. Rev. Rheumatol. 8: 701–709
  • Ceribelli, A., M. A. Nahid, M. Satoh, and E. K. Chan. 2011. MicroRNAs in rheumatoid arthritis. FEBS Lett. 585: 3667–3674
  • Wittmann, J., and H. M. Jack. 2011. MicroRNAs in rheumatoid arthritis: midget RNAs with a giant impact. Ann. Rheum. Dis. 70 Suppl 1: i92–i96
  • Filkova, M., A. Jungel, R. E. Gay, and S. Gay. 2012. MicroRNAs in rheumatoid arthritis: potential role in diagnosis and therapy. BioDrugs. 26: 131–141
  • Duroux-Richard, I., C. Jorgensen, and F. Apparailly. 2012. What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum. 64: 11–20
  • Forster, N., S. Gallinat, J. Jablonska, et al. 2007. p300 protein acetyltransferase activity suppresses systemic lupus erythematosus-like autoimmune disease in mice. J. Immunol. 178: 6941–6948
  • Garchow, B. G., O. Bartulos Encinas, Y. T. Leung, et al. 2011. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol. Med. 3: 605–615
  • Ceribelli, A., H. Sato, and E. K. Chan. MicroRNAs and autoimmunity. Curr. Opin. Immunol. 24: 686–691
  • Luo, X., W. Yang, D. Q. Ye, et al. 2011. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 7: e1002128
  • Pauley, K. M., M. Satoh, A. L. Chan, et al. 2008. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 10: R101 . doi: 10.1186/ar2493
  • Niimoto, T., T. Nakasa, M. Ishikawa, et al. 2010. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet. Disord. 11: 209
  • Subramanian, S., K. Tus, Q. Z. Li, et al. 2006. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl. Acad. Sci. USA. 103: 9970–9975
  • Deng, Y., J. Zhao, D. Sakurai, et al. 2013. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet. 9: e1003336
  • Thai, T. H., H. C. Patterson, D. H. Pham, et al. 2013. Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Fas(lpr) mouse. Proc. Natl. Acad. Sci. USA. 110: 20194–20199
  • Pan, W., S. Zhu, M. Yuan, et al. 2010. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184: 6773–6781
  • Zhao, S., Y. Wang, Y. Liang, et al. 2011. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 63: 1376–1386
  • Arzenani, M. K., A. E. Zade, Y. Ming, et al. 2011. Genomic DNA hypomethylation by histone deacetylase inhibition implicates DNMT1 nuclear dynamics. Mol. Cell. Biol. 31: 4119–4128
  • Bollati, V., B. Marinelli, P. Apostoli, et al. 2010. Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 118: 763–768
  • Wu, Z., X. Li, H. Qin, et al. 2013. Ultraviolet B enhances DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus via inhibiting DNMT1 catalytic activity. J. Dermatol. Sci. 71: 167–173
  • Kraemer, A., I. P. Chen, S. Henning, et al. 2013. UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS One 8: e83392
  • Yamagata, K., S. Fujiyama, S. Ito, et al. 2009. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol. Cell. 36: 340–347
  • Dai, R., S. McReynolds, T. Leroith, et al. 2013. Sex differences in the expression of lupus-associated miRNAs in splenocytes from lupus-prone NZB/WF1 mice. Biol. Sex Differ. 4: 19 . doi: 10.1186/2042-6410-4-19
  • Dai, R., R. A. Phillips, Y. Zhang, et al. 2008. Suppression of LPS-induced interferon-gamma and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood. 112: 4591–4597
  • Mai, T., H. Zan, J. Zhang, et al. 2010. Estrogen receptors bind to and activate the promoter of the HoxC4 gene to potentiate HoxC4-mediated AID induction, immunoglobulin class-switch DNA recombination and somatic hypermutation. J. Biol. Chem. 285: 37797–37810
  • Park, S. R., H. Zan, Z. Pal, et al. 2009. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat. Immunol. 10: 540–550
  • Leivonen, S. K., R. Makela, P. Ostling, et al. 2009. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene. 28: 3926–3936
  • Zhang, C., J. Zhao, and H. Deng. 2013. 17β-Estradiol up-regulates miR-155 expression and reduces TP53INP1 expression in MCF-7 breast cancer cells. Mol. Cell. Biochem. 379: 201–211
  • Lu, Z., M. Liu, V. Stribinskis, et al. 2008. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 27: 4373–4379
  • Perez de Lema, G., F. J. Lucio-Cazana, A. Molina, et al. 2004. Retinoic acid treatment protects MRL/lpr lupus mice from the development of glomerular disease. Kidney Int. 66: 1018–1028
  • Nozaki, Y., T. Yamagata, B. S. Yoo, et al. 2005. The beneficial effects of treatment with all-trans-retinoic acid plus corticosteroid on autoimmune nephritis in NZB/WF mice. Clin. Exp. Immunol. 139: 74–83
  • Saumet, A., G. Vetter, M. Bouttier, et al. 2012. Estrogen and retinoic acid antagonistically regulate several microRNA genes to control aerobic glycolysis in breast cancer cells. Mol. Biosyst. 8: 3242–3253
  • Libert, C., L. Dejager, and I. Pinheiro. 2010. The X chromosome in immune functions: when a chromosome makes the difference. Nat. Rev. Immunol. 10: 594–604
  • Pinheiro, I., L. Dejager, and C. Libert. 2011. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays. 33: 791–802
  • Krutzfeldt, J., N. Rajewsky, R. Braich, et al. 2005. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 438: 685–689
  • Obad, S., C. O. dos Santos, A. Petri, et al. 2011. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43: 371–378
  • De Santis, M., and C. Selmi. 2012. The therapeutic potential of epigenetics in autoimmune diseases. Clin. Rev. Allergy Immunol. 42: 92–101
  • Singh, R. P., I. Massachi, S. Manickavel, et al. 2013. The role of miRNA in inflammation and autoimmunity. Autoimmun. Rev. 12: 1160–1165
  • Vigorito, E., K. L. Perks, C. Abreu-Goodger, et al. 2007. MicroRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 27: 847–859
  • Thai, T. H., D. P. Calado, S. Casola, et al. 2007. Regulation of the germinal center response by microRNA-155. Science. 316: 604–608
  • Gracias, D. T., E. Stelekati, J. L. Hope, et al. 2013. The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nat. Immunol. 14: 593–602
  • O'Connell, R. M., D. Kahn, W. S. Gibson, et al. 2010. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 33: 607–619
  • Yang, L., M. P. Boldin, Y. Yu, et al. 2012. miR-146a controls the resolution of T cell responses in mice. J. Exp. Med. 209: 1655–1670
  • Rouas, R., H. Fayyad-Kazan, N. El Zein, et al. 2009. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur. J. Immunol. 39: 1608–1618
  • Bazzoni, F., M. Rossato, M. Fabbri, et al. 2009. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. USA. 106: 5282–5287
  • Takahashi, H., T. Kanno, S. Nakayamada, et al. 2012. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat. Immunol. 13: 587–595
  • Khan, A. A., L. A. Penny, Y. Yuzefpolskiy, et al. 2013. MicroRNA-17∼92 regulates effector and memory CD8 T-cell fates by modulating proliferation in response to infections. Blood. 121: 4473–4483
  • Knoll, M., S. Simmons, C. Bouquet, et al. 2013. miR-221 redirects precursor B cells to the BM and regulates their residence. Eur. J. Immunol. 43: 2497–2506
  • Du, C., C. Liu, J. Kang, et al. 2009. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. 10: 1252–1259
  • Tang, Y., X. Luo, H. Cui, et al. 2009. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60: 1065–1075
  • Zhao, X., Y. Tang, B. Qu, et al. 2010. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum. 62: 3425–3435

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.