952
Views
37
CrossRef citations to date
0
Altmetric
Review Articles

The effects of the microbiota on the host immune system

, , &
Pages 494-504 | Received 27 Feb 2014, Accepted 22 Jun 2014, Published online: 14 Jul 2014

References

  • Ley, R. E., D. A. Peterson, and J. I. Gordon. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837–848
  • Hooper, L. V., T. Midtvedt, and J. I. Gordon. 2002. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22: 283–307
  • Bäckhed, F., R. E. Ley, J. L. Sonnenburg, et al. 2005. Host-bacterial mutualism in the human intestine. Science 307: 1915–1920
  • Berg, R. D. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430–435
  • Eckburg, P. B., E. M. Bik, C. N. Bernstein, et al. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638
  • Friswell, M. K., H. Gika, I. J. Stratford, et al. 2010. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS One 5: e8584
  • Qin, J., R. Li, J. Raes, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65
  • Artis, D. 2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8: 411–420
  • Bäckhed, F., H. Ding, T. Wang, et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101: 15718–15723
  • Stappenbeck, T. S., L. V. Hooper, and J. I. Gordon. 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 99: 15451–15455
  • Sekirov, I., N. M. Tam, M. Jogova, et al. 2008. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect. Immun. 76: 4726–4736
  • Cebra, J. J. 1999. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69: 1046S–1051S
  • Spor, A., O. Koren, and R. Ley. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9: 279–290
  • Hill, D. A., and D. Artis. 2010. Intestinal bacteria and the regulation of immune cell homeostasis. Ann. Rev. Immunol. 28: 623–667
  • Melgar, S., and F. Shanahan. 2010. Inflammatory bowel disease – from mechanisms to treatment strategies. Autoimmunity 43: 463–477
  • Sellitto, M., G. Bai, G. Serena, et al. 2012. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS One 7: e33387
  • Scher, J. U., and S. B. Abramson. 2011. The microbiome and rheumatoid arthritis. Nat. Rev. Rheumatol. 7: 569–578
  • Wen, L., R. E. Ley, P. Y. Volchkov, et al. 2008. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455: 1109–1113
  • Ochoa-Repáraz, J., D. W. Mielcarz, S. Begum-Haque, and L. H. Kasper. 2011. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann. Neurol. 69: 240–247
  • Hong, P. Y., B. W. Lee, M. Aw, et al. 2009. Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One 98: 1582–1588
  • Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, et al. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031
  • Vijay-Kumar, M., J. D. Aitken, F. A. Carvalho, et al. 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328: 228–231
  • Wang, Z., E. Klipfell, B. J. Bennett, et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57–63
  • Moore, W. E., and L. H. Moore. 1995. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61: 3202–3207
  • Round, J. L., and S. K. Mazmanian. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9: 313–323
  • Honda, K., and D. R. Littman. 2013. The microbiome in infectious disease and inflammation. Ann. Rev. Immunol. 30: 759–795
  • Macpherson, A. J., and N. L. Harris. 2004. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4: 478–485
  • Abrams, G. D., H. Bauer, and H. Sprinz. 1963. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Investig. 12: 355–364
  • Maier, B. R., and D. J. Hentges. 1972. Experimental Shigella infections in laboratory animals. I. Antagonism by human normal flora components in gnotobiotic mice. Infect. Immun. 6: 168–173
  • Kamada, N., G. Y. Chen, N. Inohara, and G. Núñez. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14: 685–690
  • Di Giacinto, C., M. Marinaro, M. Sanchez, et al. 2005. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J. Immunol. 17: 3237–3246
  • Snsonetti, P. J. 2004. War and peace at mucosal surfaces. Nat. Rev. Immunol. 4: 953–964
  • Rakoff-Nahoum, S., J. Paglino, F. Eslami-Varzaneh, et al. 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229–241
  • Peterson, D. A., N. P. McNulty, J. L. Guruge, and J. I. Gordon. 2007. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2: 328–339
  • Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135–145
  • Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805–820
  • von Bernuth, H., C. Picard, Z. Jin, et al. 2008. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321: 691–696
  • Rakoff-Nahoum, S., J. Paglino, F. Eslami-Varzaneh, et al. 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229–241
  • Araki, A., T. Kanai, T. Ishikura, et al. 2005. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J. Gastroenterol. 40: 16–23
  • Cario, E., G. Gerken, and D. K. Podolsky. 2007. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132: 1359–1374
  • Deretic, V., and B. Levine. 2009. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5: 527–549
  • Vijay-Kumar, M., J. D. Aitken, F. A. Carvalho, et al. 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328: 228–231
  • Vijay-Kumar, M., C. J. Sanders, R. T. Taylor, et al. 2007. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Investig. 117: 3909–3921
  • Carvalho, F. A., O. Koren, J. K. Goodrich, et al. 2012. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 12: 139–152
  • Kellermayer, R., S. E. Dowd, R. A. Harris, et al. 2011. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J. 25: 1449–1460
  • de Kivit, S., M. C. Tobin, C. B. Forsyth, et al. 2014. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics. Front. Immunol. 5: 60
  • Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9: 799–809
  • Clayburgh, D. R., M. W. Musch, M. Leitges, et al. 2006. Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo. J. Clin. Investig. 116: 2682–2694
  • Anwar, M. A., S. Basith, and S. Choi. 2013. Negative regulatory approaches to the attenuation of Toll-like receptor signaling. Exp. Mol. Med. 45: e11
  • Huang, B., X. D. Yang, A. Lamb, and L. F. Chen. 2010. Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal. 22: 1282–1290
  • Kawai, T., Akira, S. 2007. TLR signaling. Semin. Immunol. 19: 24–32
  • Harhaj, E. W., and V. M. Dixit. 2011. Deubiquitinases in the regulation of NF-κB signaling. Cell Res. 21: 22–39
  • Wang, Z., C. S. Potter, J. P. Sundberg, and H. Hogenesch. 2012. SHARPIN is a key regulator of immune and inflammatory responses. J. Cell. Mol. Med. 16: 2271–2279
  • Kondo, T., T. Kawai, and S. Akira. 2012. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 33: 449–458
  • Jiang, X., and Z. J. Chen. 2011. The role of ubiquitylation in immune defence and pathogen evasion. Nat. Rev. Immunol. 12: 35–48
  • Ma, A., and B. A. Malynn. 2012. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12: 774–785
  • Turer, E. E., R. M. Tavares, E. Mortier, et al. 2008. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205: 451–464
  • Nenci, A., C. Becker, A. Wullaert, et al. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446: 557–561
  • Welz, P. S., A. Wullaert, K. Vlantis, et al. 2011. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477: 330–334
  • Franchi, L., J. H. Park, M. H. Shaw, et al. 2008. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell. Microbiol. 10: 1–8
  • Inohara, N., M. Chamaillard, C. McDonald, and Z. G. Nuñe. 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Ann. Rev. Biochem. 74: 355–383
  • Kobayashi, K. S., M. Chamaillard, Y. Ogura, et al. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307: 731–734
  • Petnicki-Ocwieja, T., T. Hrncir, Y. J. Liu, et al. 2009. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. USA 106: 15813–15818
  • Bouskra, D., C. Brézillon, M. Bérard, et al. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456: 507–510
  • Ogura, Y., D. K. Bonen, N. Inohara, et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411: 603–606
  • McGovern, D., D. A. Van Heel, T. Ahmad, and D. P. Jewell. 2001. NOD2 (CARD15), the first susceptibility gene for Crohn's disease. Gut 49: 752–754
  • Fagarasan, S., M. Muramatsu, K. Suzuki, et al. 2002. Critical roles of activationinduced cytidine deaminase in the homeostasis of gut flora. Science 298: 1424–1427
  • Cerutti, A. 2008. The regulation of IgA class switching. Nat. Rev. Immunol. 8: 421–434
  • Tsuji, M., K. Suzuki, H. Kitamura, et al. 2008. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29: 261–271
  • Hansson, J., Bosco, N., Favre, L., et al. 2011. Influence of gut microbiota on mouse B2 B cell ontogeny and function. Mol. Immunol. 48: 1091–1101
  • Tezuka, H., Y. Abe, M. Iwata, et al. 2007. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448: 929–933
  • Jacobs, J. P., and J. Braun. 2014. Immune and genetic gardening of the intestinal microbiome. FEBS Lett. DOI: 10.1016/j.febslet.2014.02.052. [Epub ahead of print]
  • Ivanov, I. I., L. Frutos Rde, N. Manel, et al. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4: 337–349
  • Weaver, C. T., R. D. Hatton, P. R. Mangan, and L. E. Harrington. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Ann. Rev. Immunol. 25: 821–852
  • Maloy, K. J., and M. C. Kullberg. 2008. IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol. 1: 339–349
  • Mitsdoerffer, M., Y. Lee, A. Jäger, et al. 2010. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl. Acad. Sci. USA 107: 14292–14297
  • Klatt, N. R., N. T. Funderburg, and J. M. Brenchley. 2013. Microbial translocation, immune activation, and HIV disease. Trends Microbiol. 21: 6–13
  • Witkowski, J., K. Ksiazek, and A. Jorres. 2004. Interleukin-17: a mediator of inflammatory responses. Cell. Mol. Life Sci. 61: 567–579
  • Abraham, C., and J. Cho. 2009. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm. Bowel Dis. 15: 1090–1100
  • Hueber, W., B. E. Sands, and S. Lewitzky, et al. 2012. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61: 1693–1700
  • Ivanov, I. I., K. Atarashi, N. Manel, et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139: 485–498
  • Wu, S., K. J. Rhee, E. Albesiano, et al. 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15: 1016–1022
  • Sakaguchi, S., T. Yamaguchi, T. Nomura, and M. Ono. 2008. Regulatory T cells and immune tolerance. Cell 133: 775–787
  • Maynard, C. L., L. E. Harrington, K. M. Janowski, et al. 2007. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3− precursor cells in the absence of interleukin 10. Nat. Immunol. 8: 931–941
  • Sakaguchi, S., M. Miyara, C. M. Costantino, and D. A. Hafler. 2010. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10: 490–500
  • Atarashi, K., T. Tanoue, T. Shima, et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337–341
  • Coombes, J. L., K. R. Siddiqui, C. V. Arancibia-Cárcamo, et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204: 1757–1764
  • Klebanoff, C. A., S. P. Spencer, P. Torabi-Parizi, et al. 2013. Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J. Exp. Med. 210: 1961–1976
  • Yen, D., J. Cheung, H. Scheerens, et al. 2006. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116: 1310–1316
  • Kühn, R., J. Löhler, D. Rennick, et al. 1993. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263–274
  • Sellon, R. K., S. Tonkonogy, M. Schultz, et al. 1998. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66: 5224–5231
  • Di Giacinto, C., M. Marinaro, M. Sanchez, et al. 2005. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J. Immunol. 174: 3237–3246
  • Livingston, M., D. Loach, M. Wilson, et al. 2010. Gut commensal Lactobacillus reuteri 100-23 stimulates an immunoregulatory response. Immunol. Cell Biol. 88: 99–102
  • Lathrop, S. K., S. M. Bloom, S. M. Rao, et al. 2011. Peripheral education of the immune system by colonic commensal microbiota. Nature 478: 250–254
  • Cebula, A., M. Seweryn, G. A. Rempala, et al. 2013. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497: 258–262
  • Piccirillo, C. A., E. d'Hennezel, E. Sgouroudis, and E. Yurchenko. 2008. CD4+Foxp3+ regulatory T cells in the control of autoimmunity: in vivo veritas. Curr. Opin. Immunol. 20: 655–662
  • Sokol, H., B. Pigneur, L. Watterlot, et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 105: 16731–16736
  • Mazmanian, S. K., J. L. Round, and D. L. Kasper. 2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453: 620–625
  • Round, J. L., S. K. Mazmanian. 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA 107: 12204–11209
  • Atarashi, K., T. Tanoue, K. Oshima, et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232–236
  • Louis, P., S. H. Duncan, S. I. McCrae, et al. 2004. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J. Bacteriol. 186: 2099–2106
  • Macho Fernandez, E., V. Valenti, C. Rockel, et al. 2011. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptid. Gut 60: 1050–1059
  • Cepek, K. L., S. K. Shaw, C. M. Parker, et al. 1994. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 372: 190–193
  • van Wijk, F., and H. Cheroutre. 2009. Intestinal T cells: facing the mucosal immune dilemma with synergy and diversity. Semmin. Immunol. 21: 130–138
  • Das, G., M. M. Augustine, J. Das, et al. 2003. An important regulatory role for CD4+CD8 alpha alpha T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 100: 5324–5329
  • Ismail, A. S., K. M. Severson, S. Vaishnava, et al. 2011. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl. Acad. Sci. USA 108: 8743–8748
  • Martin, B., K. Hirota, D. J. Cua, et al. 2009. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31: 321–330
  • Sutton, C. E., S. J. Lalor, C. M. Sweeney, et al. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31: 331–341
  • Petermann, F., V. Rothhammer, M. C. Claussen, et al. 2010. γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33: 351–363
  • Spits, H., and J. P. Di Santo. 2011. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12: 21–27
  • Spits, H., D. Artis, M. Colonna, et al. 2013. Innate lymphoid cells- a proposal for uniform nomenclature. Nat. Rev. Immunol. 13: 145–149
  • Macia, L., A. N. Thorburn, L. C. Binge, et al. 2012. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol. Rev. 245: 164–176
  • Kosiewicz, M. M., A. L. Zirnheld, and P. Alard. 2011. Gut microbiota, immunity and disease: a complex relationship. Front. Microbiol. 2: 180
  • Myasoedova, E., C. S. Crowson, H. M. Kremers, et al. 2010. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955–2007. Arthritis Rheum. 62: 1576–1582
  • Koch-Henriksen, N., and P. S. Sørensen. 2010. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 9: 520–532
  • Noverr, M. C., and G. B. Huffnagle. 2004. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 12: 562–568
  • Maslowski, K. M., and C. R. Mackay. 2011. Diet, gut microbiota and immune responses. Nature Immunol. 12: 5–9
  • Oh, D. Y., S. Talukdar, E. J. Bae, et al. 2010. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142: 687–698
  • Turnbaugh, P. J., V. K. Ridaura, J. J. Faith, et al. 2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Translat. Med. 1: 6ra14
  • Wu, G. D., J. Chen, C. Hoffmann, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105–108
  • De Filippo, C., D. Cavalieri, M. Di Paola, et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 107: 14691–14696
  • Cummings, J. H., E. W. Pomare, W. J. Branch, et al. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28: 1221–1227
  • Arpaia, N., C. Campbell, X. Fan, et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504: 451–455
  • Furusawa, Y., Y. Obata, S. Fukuda, et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446–450
  • Davie, J. 2003. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133: 2485S–2493S
  • Maslowski, K. M., A. T. Vieira, A. Ng, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282–1286
  • Huda-Faujan, N., A. S. Abdulamir, A. B. Fatimah, et al. 2010. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem. J. 4: 53–58
  • Frank, D. N., A. L. St Amand, R. A. Feldman, et al. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104: 13780–13785
  • Venkatraman, A., B. S. Ramakrishna, A. B. Pulimood, et al. 2000. Increased permeability in dextran sulphate colitis in rats: time course of development and effect of butyrate. Scand. J. Gastroenterol. 35: 1053–1059
  • Fung, I., J. P. Garrett, A. Shahane, and M. Kwan. 2012. Do bugs control our fate? The influence of the microbiome on autoimmunity. Curr. Aller. Asthma Rep. 12: 511–519
  • Pérez-Cobas, A. E., M. J. Gosalbes, A. Friedrichs, et al. 2013. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62: 1591–1601
  • Blaser, M. 2011. Antibiotic overuse: stop the killing of beneficial bacteria. Nature 476: 393–394
  • De La Cochetière, M. F., T. Durand, P. Lepage, et al. 2005. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol. 43: 5588–5592
  • Ichinohe, T., I. K. Pang, Y. Kumamoto, et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108: 5354–5359
  • Abt, M. C., L. C. Osborne, L. A. Monticelli, et al. 2012. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37: 158–170
  • Hwang, J. S., C. R. Im, and S. H. Im. 2012. Immune disorders and its correlation with gut microbiome. Immune Netw. 12: 129–138
  • Romagnani, S. 2004. The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 112: 352–363
  • Belkaid, Y., and S. Naik. 2013. Compartmentalized and systemic control of tissue immunity by commensals. Nat. Immunol. 14: 646–653
  • Dominguez-Bello, M. G., E. K. Costello, M. Contreras, et al. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 107: 11971–11975
  • Bager, P., J. Wohlfahrt, and T. Westergaard. 2008. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin. Exp. Allergy 38: 634–642
  • Spor, A., O. Koren, R. and Ley. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9: 279–290
  • Dicksved, J., J. Halfvarson, M. Rosenquist, et al. 2008. Molecular analysis of the gut microbiota of identical twins with Crohn's disease. ISME J. 2: 716–727
  • Gophna, U., K. Sommerfeld, S. Gophna, et al. 2006. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J. Clin. Microbiol. 44: 4136–4141
  • Giongo, A., K. A. Gano, D. B. Crabb, et al. 2011. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5: 82–91
  • Murri, M., I. Leiva, J. M. Gomez-Zumaquero, et al. 2013. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 11: 46
  • Qin, J., Y. Li, Z. Cai, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55–60
  • Karlsson, F. H., V. Tremaroli, I. Nookaew, et al. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498: 99–103
  • Ley, R. E., F. Bäckhed, P. Turnbaugh, et al. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102: 11070–11075
  • Pflughoeft, K. J., and J. Versalovic. 2012. Human microbiome in health and disease. Ann. Rev. Pathol. 7: 99–122
  • Turnbaugh, P. J., M. Hamady, T. Yatsunenko, et al. 2009. A core gut microbiome in obese and lean twins. Nature 457: 480–484
  • Armougom, F., M. Henry, B. Vialettes, et al. 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 4: e7125
  • Nadal, I., E. Donat, C. Ribes-Koninckx, et al. 2007. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J. Med. Microbiol. 56: 1669–1674
  • Collado, M. C., M. Calabuig, and Y. Sanz. 2007. Differences between the fecal microbiota of coeliac infants and healthy controls. Curr. Issues Intest. Microbiol. 8: 9–14
  • Wroblewski, L. E., R. M. Peek, and K. T. Wilson. 2010. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev. 23: 713–739
  • Kostic, A. D., D. Gevers, C. S. Pedamallu, et al. 2012. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22: 292–298
  • Koziel, J., P. Mydel, and J. Potempa. 2014. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr. Rheumatol. Rep. 16: 408
  • Vaahtovuo, J., E. Munukka, M. Korkeamäki, et al. 2008. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35: 1500–1505
  • Sekirov, I., S. L. Russell, L. C. Antunes, and B. B. Finlay. 2010. Gut microbiota in health and disease. Physiol. Rev. 90: 859–904
  • Kang, D. W., J. G. Park, Z. E. Ilhan, et al. 2013. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8: e68322
  • Finegold, S. M., S. E. Dowd, V. Gontcharova, et al. 2010. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16: 444–453
  • Hörmannsperger, G., T. Clavel, and D. Haller. 2012. Gut matters: microbe-host interactions in allergic diseases. J. Aller. Clin. Immunol. 129: 1452–1459
  • Lu, Y. C., W. C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145–151
  • Kamdar, K., V. Nguyen, and R. W. DePaolo. 2013. Toll-like receptor signaling and regulation of intestinal immunity. Virulence 4: 207–212
  • González-Navajas, J. M., S. Fine, J. Law, et al. 2010. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice. J. Clin. Invest. 120: 570–581
  • Round, J. L., S. M. Lee, J. Li, et al. 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332: 974–977
  • Gewirtz, A. T., T. A. Navas, S. Lyons, et al. 2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167: 1882–1885
  • Crellin, N. K., R. V. Garcia, O. Hadisfar, et al. 2005. Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J. Immunol. 175: 8051–8059
  • Hisamatsu, T., Suzuki, M., Reinecker, H.C., et al. 2003. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124: 993–1000
  • Vignal, C., E. Singer, L. Peyrin-Biroulet, et al. 2007. How NOD2 mutations predispose to Crohn's disease? Microbes Infect. 9: 658–663
  • Hedl, M., and C. Abraham. 2011. Distinct roles for Nod2 protein and autocrine interleukin-1beta in muramyl dipeptide-induced mitogen-activated protein kinase activation and cytokine secretion in human macrophages. J. Biol. Chem. 286: 26440–26449
  • Singh, N., A. Gurav, S. Sivaprakasam, et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40: 128–139
  • Hamer, H. M., D. Jonkers, K. Venema, et al. 2008. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27: 104–119
  • Konstantinov, S. R., H. Smidt, W. M. de Vos, et al. 2008. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl. Acad. Sci. USA 105: 19474–19479
  • den Dunnen, J., S. I. Gringhuis, and T. B. Geijtenbeek. 2009. Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol. Immunother. 58: 1149–1157
  • Zarek, P. E., C. T. Huang, E. R. Lutz, et al. 2008. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111: 251–259
  • Wilson, J. M., C. C. Kurtz, S. G. Black, et al. 2011. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6. J. Immunol. 186: 6746–6752

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.