996
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Biological relevance of citrullinations: diagnostic, prognostic and therapeutic options

, , , &
Pages 73-79 | Received 19 Feb 2014, Accepted 30 Aug 2014, Published online: 18 Dec 2014

References

  • Wegner, N., K. Lundberg, A. Kinloch, et al. 2010. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233: 34–54
  • Van Venrooij, W. J., J. J. van Beers, and G. J. Pruijn. 2011. Anti-CCP antibodies: the past, the present and the future. Nat. Rev. Rheumatol. 7: 391–398
  • Vossenaar, E. R., A. J. Zendman, W. J. Van Venrooij, and G. J. Pruijn. 2003. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25: 1106–1118
  • De Ceuleneer, M., K. Van Steendam, M. Dhaenens, and D. Deforce. 2012. In vivo relevance of citrullinated proteins and the challenges in their detection. Proteomics 12: 752–760
  • De, R. L., A. P. Nicholas, T. Cantaert, et al. 2005. Synovial intracellular citrullinated proteins colocalizing with peptidyl arginine deiminase as pathophysiologically relevant antigenic determinants of rheumatoid arthritis-specific humoral autoimmunity. Arthritis Rheum. 52: 2323–2330
  • Gyorgy, B., E. Toth, E. Tarcsa, et al. 2006. Citrullination: a posttranslational modification in health and disease. Int. J. Biochem. Cell. Biol. 38: 1662–1677
  • Guerrin, M., A. Ishigami, M. C. Mechin, et al. 2003. cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type I. Biochem. J. 370: 167–174
  • Moelants, E. A. V., A. Morier, J. van Damme, et al. 2012. Peptidylarginine deiminases: physiological function, interaction with chemokines and role in pathology. Drug Discov. Today Technol. 9: e261–e280
  • Horibata, S., S. A. Coonrod, and B. D. Cherrington. 2012. Role for peptidylarginine deiminase enzymes in disease and female reproduction. J. Reprod. Dev. 58: 274–282
  • Vossenaar, E. R., A. J. Zendman, W. J. Van Venrooij, and G. J. Pruijn. 2003. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25: 1106–1118
  • Hagiwara, T., K. Nakashima, H. Hirano, et al. 2002. Determination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem. Biophys. Res. Commun. 290: 979–983
  • Wang, Y., M. Li, S. Stadler, et al. 2009. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184: 205–213
  • Chirivi, R. G. S., J. W. G. Rosmalen, G. J. Jenniskens, et al. 2013. Citrullination: a target for disease intervention in multiple sclerosis and other inflammatory diseases? J. Clin. Cell. Immunol. 4: 146
  • Skriner, K., K. Adolph, P. R. Jungblut, and G. R. Burmester. 2006. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 54: 3809–3814
  • Kidd, B. A., P. P. Ho, O. Sharpe, et al. 2008. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res. Ther. 10: R119
  • Lundberg, K., S. Nijenhuis, E. R. Vossenaar, et al. 2005. Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res. Ther. 7: R458–R467
  • Khandpur, R., C. Carmona-Rivera, A. Vivekanandan-Giri, et al. 2013. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5: 178ra40
  • Pritzker, L. B., S. Joshi, J. J. Gowan, et al. 2000. Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39: 5374–5381
  • Moscarello, M. A., F. G. Mastronardi, and D. D. Wood. 2007. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem. Res. 32: 251–256
  • Vossenaar, E. R., A. J. Zendman, W. J. Van Venrooij, and G. J. Pruijn. 2003. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25: 1106–1118
  • Snir, O., M. Widhe, S. C. von, et al. 2009. Multiple antibody reactivities to citrullinated antigens in sera from patients with rheumatoid arthritis: association with HLA-DRB1 alleles. Ann. Rheum. Dis. 68: 736–743
  • Vossenaar, E. R., A. J. Zendman, W. J. Van Venrooij, and G. J. Pruijn. 2003. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25: 1106–1118
  • Schuerwegh, A. J., A. Ioan-Facsinay, A. L. Dorjee, et al. 2010. Evidence for a functional role of IgE anticitrullinated protein antibodies in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 107: 2586–2591
  • Suurmond, J., A. J. Schuerwegh, and R. E. Toes. 2011. Anti-citrullinated protein antibodies in rheumatoid arthritis: a functional role for mast cells and basophils? Ann. Rheum. Dis. 70: i55–i58
  • Vossenaar, E. R., A. J. Zendman, W. J. Van Venrooij, and G. J. Pruijn. 2003. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25: 1106–1118
  • Snir, O., M. Widhe, M. Hermansson, et al. 2010. Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients. Arthritis Rheum. 62: 44–52
  • Makrygiannakis, D., E. af Klint, I. E. Lundberg, et al. 2006. Citrullination is an inflammation-dependent process. Ann. Rheum. Dis. 65: 1219–1222
  • Darrah, E., J. T. Giles, M. L. Ols, et al. 2013. Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity. Sci. Transl. Med. 5: 186ra65
  • Antoniou, K. M., K. D. Samara, I. Lasithiotaki, et al. 2011. Investigation of the citrullination pathway in the pathogenesis of fibrotic lung disorders: preliminary results
  • Klareskog, L., P. Stolt, K. Lundberg, et al. 2006. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54: 38–46
  • Vassiliadis, E., S. S. Veidal, M. N. Kristiansen, et al. 2013. Peptidyl arginine deiminase inhibitor effect on hepatic fibrogenesis in a CCl4 pre-clinical model of liver fibrosis. Am. J. Transl. Res. 5: 465–469
  • Abdeen, S., S. O. Olusi, and S. George. 2011. Serum anti-modified citrullinated vimentin antibody concentration is associated with liver fibrosis in patients with chronic hepatitis. Hepat. Med. 3: 13–18
  • Aletaha, D., T. Neogi, A. J. Silman, et al. 2010. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62: 2569–2581
  • Pruijn, G. J., A. Wiik, and W. J. Van Venrooij. 2010. The use of citrullinated peptides and proteins for the diagnosis of rheumatoid arthritis. Arthritis Res. Ther. 12: 203
  • Rantapaa-Dahlqvist, S., B. A. de Jong, E. Berglin, et al. 2003. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48: 2741–2749
  • Sanmarti, R., S. Cabrera-Villalba, J. A. Gomez-Puerta, et al. 2012. Palindromic rheumatism with positive anticitrullinated peptide/protein antibodies is not synonymous with rheumatoid arthritis: a longterm followup study. J. Rheumatol. 39: 1929–1933
  • Orge, E., A. Cefle, A. Yazici, et al. 2010. The positivity of rheumatoid factor and anti-cyclic citrullinated peptide antibody in nonarthritic patients with chronic hepatitis C infection. Rheumatol. Int. 30: 485–488
  • Papamichael, K., A. Tsirogianni, C. Papasteriades, and G. J. Mantzaris. 2010. Low prevalence of antibodies to cyclic citrullinated peptide in patients with inflammatory bowel disease regardless of the presence of arthritis. Eur. J. Gastroenterol. Hepatol. 22: 705–709
  • Klareskog, L., J. Ronnelid, K. Lundberg, et al. 2008. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26: 651–675
  • Amara, K., J. Steen, F. Murray, et al. 2013. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J. Exp. Med. 210: 445–455
  • Karsdal, M. A., M. J. Nielsen, J. M. Sand, et al. 2013. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay. Drug Dev. Technol. 11: 70–92
  • Lapolla, A., P. Traldi, and D. Fedele. 2005. Importance of measuring products of non-enzymatic glycation of proteins. Clin Biochem. 38: 103–115
  • Henriksen, K., D. J. Leeming, I. Byrjalsen, et al. 2007. Osteoclasts prefer aged bone. Osteoporos. Int. 18: 751–759
  • Doyle H. A., M. L. Yang, M. T. Raycroft, et al. 2013. Autoantigens: novel forms and presentation to the immune system. Autoimmunity. 47: 220–233
  • Atassi, M. Z. and P. Casali. 2008. Molecular mechanisms of autoimmunity. Autoimmunity 41: 123–132
  • Heidari, B. 2013. C-reactive protein and other markers of inflammation in hemodialysis patients. Caspian. J. Intern. Med. 4: 611–616
  • Karsdal, M. A., K. Henriksen, D. J. Leeming, et al. 2010. Novel combinations of post-translational modification (PTM) neo-epitopes provide tissue-specific biochemical markers--are they the cause or the consequence of the disease? Clin. Biochem. 43: 793–804
  • Bauer, D. C., D. J. Hunter, S. B. Abramson, et al. 2006. Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage 14: 723–727
  • Veidal, S. S., A. C. Bay-Jensen, G. Tougas, et al. 2010. Serum markers of liver fibrosis: combining the BIPED classification and the neo-epitope approach in the development of new biomarkers. Dis. Markers 28: 15–28
  • Schaller, S., K. Henriksen, P. Hoegh-Andersen, et al. 2005. In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? Assay. Drug Dev. Technol. 3: 553–580
  • Bay-Jensen, A. C., S. Wichuk, I. Byrjalsen, et al. 2013. Circulating protein fragments of cartilage and connective tissue degradation are diagnostic and prognostic markers of rheumatoid arthritis and ankylosing spondylitis. PLoS. One. 8: e54504
  • Karsdal, M. A., K. Henriksen, D. J. Leeming, et al. 2010. Novel combinations of post-translational modification (PTM) neo-epitopes provide tissue-specific biochemical markers--are they the cause or the consequence of the disease? Clin. Biochem. 43: 793–804
  • Saeki, Y., E. Kudo-Tanaka, S. Ohshima, et al. 2013. Baseline anti-citrullinated peptide antibody (ACPA) titers and serum interleukin-6 (IL-6) levels possibly predict progression of bone destruction in early stages of rheumatoid arthritis (ERA). Rheumatol. Int. 33: 451–456
  • Siebuhr, A. S., A. C. Bay-Jensen, D. J. Leeming, et al. 2013. Serological identification of fast progressors of structural damage with rheumatoid arthritis. Arthritis Res. Ther. 15: R86
  • Sokolove, J., R. Bromberg, K. D. Deane, et al. 2012. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS. One. 7: e35296
  • Karsdal, M. A., C. Christiansen, C. Ladel, et al. 2013. Osteoarthritis – a case for personalized health care? Osteoarthritis. Cartilage. 22: 7–16
  • Isaacs, J. D., S. B. Cohen, P. Emery, et al. 2013. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann. Rheum. Dis. 72: 329–336
  • Vassiliadis, E., C. P. Oliveira, M. R. vares-da-Silva, et al. 2012. Circulating levels of citrullinated and MMP-degraded vimentin (VICM) in liver fibrosis related pathology. Am. J. Transl. Res. 4: 403–414
  • Sailer, M., C. Dahlhoff, P. Giesbertz, et al. 2013. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome. PLoS One 8: e63950
  • Jones, J. E., C. P. Causey, B. Knuckley, et al. 2009. Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr. Opin. Drug Discov. Dev. 12: 616–627
  • Willis, V. C., A. M. Gizinski, N. K. Banda, et al. 2011. N-alpha-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J. Immunol. 186: 4396–4404
  • Chumanevich, A. A., C. P. Causey, B. A. Knuckley, et al. 2011. Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am. J. Physiol Gastrointest. Liver Physiol 300: G929–38
  • Slack, J. L., C. P. Causey, and P. R. Thompson. 2011. Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cell. Mol. Life Sci. 68: 709–720
  • Wang, Y., P. Li, S. Wang, et al. 2012. Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. J. Biol. Chem. 287: 25941–25953
  • Knight, J. S., W. Zhao, W. Luo, et al. 2013. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Invest. 123: 2981–2993
  • Lange, S., S. Gogel, K. Y. Leung, et al. 2011. Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability. Dev. Biol. 355: 205–214

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.