284
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Deletion of IL-4Rα in the BALB/c mouse is associated with altered lesion topography and susceptibility to experimental autoimmune encephalomyelitis

, , , , , & show all
Pages 208-221 | Received 26 May 2014, Accepted 09 Nov 2014, Published online: 27 Nov 2014

References

  • Baxter, A. 2007. The origin and application of experimental autoimmune encephalomyelitis. Nature Rev. Immunol. 7: 904–912
  • Constantinescu, C. S., N. Farooqi, K. O’Brien, and B. Gran. 2011. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis. Brit. J. Pharmacol. 164: 1079–1106
  • Kipp, M., B. van der Star, D. Y. C. Vogel, et al. 2012. Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult. Scler. Rel. Dis. 1: 15–28
  • ‘t Hart, B., B. Gran, and R. Weissert. 2011. EAE: imperfect but useful models of multiple sclerosis. Trends Mol. Med. 17: 119–125
  • Croxford, A. L., F. C. Kurschus, and A. Waisman. 2011. Mouse models of multiple sclerosis: historical facts and future implications. Biochem. Biophys. Acta 1812: 177–183
  • Mix, E., H. Meyer-Rienecker, H.-P. Hartung, and U. K. Zettl. 2010. Animal models of multiple sclerosis –potentials and limitations. Prog. Neurobiol. 92: 386–404
  • Kuerten, S., S. Javeri, M. Tary-Lehmann, et al. 2008. Fundamental differences in the dynamics of CNS lesion development and composition in MP-4- and MOG peptide 35-55 induced experimental autoimmune encephalomyelitis. Clin. Immunol. 129: 256–267
  • Berard, J. L., K. Wolak, S. Fournier, and S. David. 2010. Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C58Bl/6 mice. Glia. 58: 434–445
  • Wang, D., M. M. Ayers, L. J. Hazelwood, et al. 2005. Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia. 51: 235–240
  • McRae, B. L., M. K. Kennedy, L. J. Tan, et al. 1992. Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J. Neuroimmunol. 38: 229–240
  • Wang, C., B. G. Gold, L. J. Kaler, et al. 2006. Antigen-specific therapy promotes repair of myelin and axonal damage in established EAE. J. Neurochem. 98: 1817–1827
  • Berger, T., S. Weerth, K. Kojima, et al. 1997. Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions and peripheral nervous system. Lab. Invest. 76: 355–364
  • Kuerten, S., and P. V. Lehmann. 2011. The immune pathogenesis of experimental autoimmune encephalomyelitis: lessons learned for multiple sclerosis? J. Interferon Cytokine Res. 31: 907–916
  • Mougdil, K. D., and D. Choubey. 2011. Cytokines and autoimmunity: role in induction, regulation and treatment. J. Interferon Cytokine Res. 31: 695–703
  • Coffman, R. L. 2006. Origins of the T(H)1-T(H)2 model: a personal perspective. Nature Immunol. 7: 539–541
  • Watanabe, H., K. Numata, T. Ito, et al. 2004. Innate immune response in Th1- and Th2-dominant mouse strains. Shock 22: 460–466
  • La Flamme, A. C., K. Ruddenklau, and B. T. Bäckström. 2003. Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect. Immun. 71: 4996–5004
  • Sewell, D., Z. Qing, E. Reinke, et al. 2003. Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int. Immunol. 15: 59–69
  • Cua, D. J., D. R. Hinton, and S. A. Stohlman. 1995. Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. Th2-mediated suppression of autoimmune disease. J. Immunol. 155: 4052–4059
  • Chen, S. J., Y. L. Wang, H. C. Fan, et al. 2012. Current status of immunomodulation and immunomediated therapeutic strategies for multiple sclerosis. Clin. Dev. Immunol. 970789. doi: 10.1155/2012/970789
  • Racke, M. K., A. Bonomo, D. E. Scott, et al. 1994. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180: 1961–1966
  • Bettelli, E., M. P. Das, E. D. Howard, et al. 1998. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10 and IL-4 deficient transgenic mice. J. Immunol. 161: 3299–3306
  • Ponomarev, E. D., K. Maresz, Y. Tan, and B. N. Dittel. 2007. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci. 27: 10714–10721
  • Gaupp, S., B. Cannella, and C. S. Raine. 2008. Amelioration of experimental autoimmune encephalomyelitis in IL-4Rα mice implicates compensatory up-regulation of the Th2-type cytokines. Am. J. Pathol. 173: 119–129
  • Keating, P., D. O’Sullivan, J. B. Tierney, et al. 2009. Protection from EAE by IL-4Rα−/− macrophages depends upon T regulatory cell involvement. Immunol. Cell Biol. 87: 534–545
  • Hsieh, C.-S., S. E. Macatonia, A. O’Garra, and K. M. Murphy. 1995. T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med. 181: 713–717
  • Mohrs, M., B. Ledermann, G. Kohler, et al. 1999. Differences between IL-4 and IL-4 receptor α-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J. Immunol. 162: 7302–7308
  • La Flamme, A. C., M. Harvie, A. McNeill, et al. 2006. Fcgamma receptor-ligating complexes improve the course of experimental autoimmune encephalomyelitis by enhancing basal Th2 responses. Immunol. Cell Biol. 84: 522–529
  • Pham, H., A. A. Ramp, N. Klonis, et al. 2009. The astrocytic response in early experimental autoimmune encephalomyelitis occurs across both the grey and white matter compartments. J Neuroimmunol 208: 30–39
  • Hobom, M., M. K. Storch, R. Weissert, et al. 2004. Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis. Brain Pathol. 14: 148–157
  • Broberg, E. K., A. A. Salmi, and V. Hukkanen. 2004. IL-4 is the key regulator in herpes simplex virus-based gene therapy of BALB/c experimental autoimmune encephalomyelitis. Neurosci. Lett. 364: 173–178
  • Constantinescu, C. S., B. Hilliard, E. Ventura, et al. 2001. Modulation of susceptibility and resistance to an autoimmune model of multiple sclerosis in prototypically susceptible and resistant strains by neutralization of interleukin-12 and interleukin-4, respectively. Clin. Immunol. 98: 23–30
  • Sobel, R. A. 2000. Genetic and epigenetic influence on EAE phenotypes induced with different encephalitogenic peptides. J. Neuroimmunol. 108: 45–52
  • Tonra, J. R. 2002. Cerebellar susceptibility to experimental autoimmune encephalomyelitis in SJL/J mice: potential interaction of immunology with vascular anatomy. Cerebellum. 1: 7–68
  • Gold, R., C. Linnington, and H. Lassmann. 2006. Understanding the pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain. 129: 1953–1971
  • Chen, X., R. T. Winkler-Pickett, N. H. Carbonetti, et al. 2006. Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. Eur. J. Immunol. 36: 671–680
  • Hou, W., Y. Wu, S. Sun, et al. 2003. Pertussis toxin enhances Th1 responses by stimulation of dendritic cells. J. Immunol. 170: 1728–1736
  • Kerfoot, S. M., E. M. Long, M. J. Hickey, et al. 2004. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J. Immunol. 173: 7070–7077
  • Moss, J., S. J. Stanley, D. L. Burns, et al. 1983. Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J. Biol. Chem. 258: 11879–11882
  • Shive, C. L., S. Hofstetter, L. Arredondo, et al. 2000. The enhanced antigen-specific production of cytokines induced by pertussis toxin is due to clonal expansion of T cells and not to altered effector functions of long-term memory cells. Eur. J. Immunol. 30: 2422–2431
  • Tonon, S., S. Goriely, E. Aksoy, et al. 2002. Bordetella pertussis toxin induces the release of inflammatory cytokines and dendritic cell activation in whole blood: impaired responses in human newborns. Eur. J. Immunol. 32: 3118–3125
  • Kuerten, S., and D. N. Angelov. 2008. Comparing the CNS morphology and immunobiology of different EAE models in C57Bl/6 mice – a step towards understanding the complexity of multiple sclerosis. Ann. Anat. 190: 1–15
  • Rasmussen, S., Y. Wang, P. Kivisakk, et al. 2007. Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing-remitting experimental autoimmune encephalomyelitis. Brain. 130: 2816–2829
  • Lyons, J. A., M. J. Ramsbottom, J. L. Trotter, and A. H. Cross. 2002. Identification of the encephalitogenic epitopes of CNS proteolipid protein in BALB/c mice. J. Autoimmun. 19: 195–201
  • Tuohy, V. K., R. A. Sobel, and M. B. Lees. 1988. Myelin proteolipid-induced experimental autoimmune encephalomyelitis. Variations of disease expression in different strains of mice. J. Immunol. 140: 1868–1873
  • Zhao, H., P. Kiptoo, T. D. Williams, et al. 2010. Immune response to controlled release of immunomodulating peptides in a murine experimental autoimmune encephalomyelitis (EAE) model. J. Control Release 141: 145–152
  • Lees, J., P. T. Golumbek, J. Sim, et al. 2008. Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis. J. Exp. Med. 205: 2633–2642
  • Muller, D. M., M. P. Pender, and J. M. Greer. 2005. Blood–brain barrier disruption and lesion localisation in experimental autoimmune encephalomyelitis with predominant cerebellar and brainstem involvement. J. Neuroimmunol. 160: 162–169
  • Abromson-Leeman, S., R. Bronson, Y. Luo, et al. 2005. T-cell properties determine disease site, clinical presentation, and cellular pathology of experimental autoimmune encephalomyelitis. Am. J. Pathol. 165: 1519–1533
  • Jäger, A., V. Dardalhon, R. A. Sobel, et al. 2009. Th1, Th17 and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183: 7169–7177
  • Wensky, A. K., G. C. Furtado, M. C. Garibaldi-Marcondes, et al. 2005. IFN-g determines distinct clinical outcomes in autoimmune encephalomyelitis. J. Immunol. 174: 1416–1423
  • Kira, J. I., T. Kanai, Y. Nishimura, et al. 1996. Western versus Asian types of multiple sclerosis: immunogenetically and clinically distinct disorders. Ann. Neurol. 40: 569–574

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.