919
Views
96
CrossRef citations to date
0
Altmetric
Review Articles

Macrophages in vascular inflammation – From atherosclerosis to vasculitis

, , , &
Pages 139-151 | Received 24 Nov 2014, Accepted 31 Jan 2015, Published online: 26 Mar 2015

References

  • Mills, C. D. 2012. M1 and M2 macrophages: oracles of health and disease. Crit. Rev. Immunol. 32: 463–488
  • Gordon, S. 2002. Pattern recognition receptors: doubling up for the innate immune response. Cell 111: 927–930
  • Hansson, G. K., and A. Hermansson. 2011. The immune system in atherosclerosis. Nat. Immunol. 12: 204–212
  • Geissmann, F., M. G. Manz, S. Jung, et al. 2010. Development of monocytes, macrophages, and dendritic cells. Science 327: 656–661
  • Hoeffel, G., Y. Wang, M. Greter, et al. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209: 1167–1181
  • Dutta, P., G. Courties, Y. Wei, et al. 2012. Myocardial infarction accelerates atherosclerosis. Nature 487: 325–329
  • Moore, K. J., F. J. Sheedy, and E. A. Fisher. 2013. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13: 709–721
  • Ley, K., C. Laudanna, M. I. Cybulsky, and S. Nourshargh. 2007. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7: 678–689
  • Li, A. C., and C. K. Glass. 2002. The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 8: 1235–1242
  • Maiellaro, K., and W. R. Taylor. 2007. The role of the adventitia in vascular inflammation. Cardiovasc. Res. 75: 640–648
  • Fenyo, I. M., and A. V. Gafencu. 2013. The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology 218: 1376–1384
  • Weber, C., and H. Noels. 2011. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17: 1410–1422
  • Tacke, F., D. Alvarez, T. J. Kaplan, et al. 2007. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117: 185–194
  • Combadiere, C., S. Potteaux, M. Rodero, et al. 2008. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117: 1649–1657
  • Bush, E., N. Maeda, W. A. Kuziel, et al. 2000. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension 36: 360–363
  • Mantovani, A., A. Sica, S. Sozzani, et al. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25: 677–686
  • Duong, C. Q., S. M. Bared, A. Abu-Khader, et al. 2004. Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages. Biochim. Biophys. Acta 1682: 112–119
  • Michaud, J., D. S. Im, and T. Hla. 2010. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 184: 1475–1483
  • Keul, P., S. Lucke, K. von Wnuck Lipinski, et al. 2011. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ. Res. 108: 314–323
  • Stenmark, K. R., M. E. Yeager, K. C. El Kasmi, et al. 2013. The adventitia: essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 75: 23–47
  • Langheinrich, A. C., M. Kampschulte, T. Buch, and R. M. Bohle. 2007. Vasa vasorum and atherosclerosis - Quid novi? Thromb. Haemost. 97: 873–879
  • Moulton, K. S., K. Vakili, D. Zurakowski, et al. 2003. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc. Natl. Acad. Sci. USA 100: 4736–4741
  • Gossl, M., D. Versari, D. Mannheim, et al. 2007. Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia–implications for vulnerable plaque-development. Atherosclerosis 192: 246–252
  • Galkina, E., A. Kadl, J. Sanders, et al. 2006. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203: 1273–1282
  • Herrmann, J., L. O. Lerman, M. Rodriguez-Porcel, et al. 2001. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc. Res. 51: 762–766
  • Trott, D. W., and D. G. Harrison. 2014. The immune system in hypertension. Adv. Physiol. Educ. 38: 20–24
  • Weyand, C. M., and J. J. Goronzy. 2013. Immune mechanisms in medium and large-vessel vasculitis. Nat. Rev. Rheumatol. 9: 731–740
  • Weyand, C. M., A. D. Wagner, J. Bjornsson, and J. J. Goronzy. 1996. Correlation of the topographical arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis. J. Clin. Invest. 98: 1642–1649
  • Pryshchep, O., W. Ma-Krupa, B. R. Younge, et al. 2008. Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation 118: 1276–1284
  • Weyand, C. M., Y. J. Liao, and J. J. Goronzy. 2012. The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J. Neuroophthalmol. 32: 259–265
  • Ma-Krupa, W., M. Kwan, J. J. Goronzy, and C. M. Weyand. 2005. Toll-like receptors in giant cell arteritis. Clin. Immunol. 115: 38–46
  • Ma-Krupa, W., M. S. Jeon, S. Spoerl, et al. 2004. Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J. Exp. Med. 199: 173–183
  • Trogan, E., J. E. Feig, S. Dogan, et al. 2006. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl. Acad. Sci. USA 103: 3781–3786
  • Mantovani, A., C. Garlanda, and M. Locati. 2009. Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler. Thromb. Vasc. Biol. 29: 1419–1423
  • Martinez, F. O., A. Sica, A. Mantovani, and M. Locati. 2008. Macrophage activation and polarization. Front. Biosci. 13: 453–461
  • Mosser, D. M., and J. P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8: 958–969
  • Cohen, H. B., and D. M. Mosser. 2013. Extrinsic and intrinsic control of macrophage inflammatory responses. J. Leukoc. Biol. 94: 913–919
  • Martinez, F. O., and S. Gordon. 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6: 13
  • Murray, P. J., J. E. Allen, S. K. Biswas, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41: 14–20
  • Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122: 787–795
  • Sica, A., and V. Bronte. 2007. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117: 1155–1166
  • Krausgruber, T., K. Blazek, T. Smallie, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12: 231–238
  • Liao, X., N. Sharma, F. Kapadia, et al. 2011. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121: 2736–2749
  • Cao, Z., X. Sun, B. Icli, et al. 2010. Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 116: 4404–4414
  • Odegaard, J. I., R. R. Ricardo-Gonzalez, A. Red Eagle, et al. 2008. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7: 496–507
  • Kang, K., S. M. Reilly, V. Karabacak, et al. 2008. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7: 485–495
  • Odegaard, J. I., R. R. Ricardo-Gonzalez, M. H. Goforth, et al. 2007. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447: 1116–1120
  • Pauleau, A. L., R. Rutschman, R. Lang, et al. 2004. Enhancer-mediated control of macrophage-specific arginase I expression. J. Immunol. 172: 7565–7573
  • Whyte, C. S., E. T. Bishop, D. Ruckerl, et al. 2011. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J. Leukoc. Biol. 90: 845–854
  • Date, D., R. Das, G. Narla, et al. 2014. Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization. J. Biol. Chem. 289: 10318–10329
  • Mahabeleshwar, G. H., D. Kawanami, N. Sharma, et al. 2011. The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity 34: 715–728
  • Lawrence, T., and D. W. Gilroy. 2007. Chronic inflammation: a failure of resolution? Int. J. Exp. Pathol. 88: 85–94
  • Galkina, E., and K. Ley. 2009. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 27: 165–197
  • Khallou-Laschet, J., A. Varthaman, G. Fornasa, et al. 2010. Macrophage plasticity in experimental atherosclerosis. PLoS One 5: e8852
  • Stoger, J. L., M. J. Gijbels, S. van der Velden, et al. 2012. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225: 461–468
  • Butcher, M. J., and E. V. Galkina. 2012. Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Front. Physiol. 3: 44
  • Moore, K. J., and I. Tabas. 2011. Macrophages in the pathogenesis of atherosclerosis. Cell 145: 341–355
  • Weyand, C. M., and J. J. Goronzy. 2014. Clinical practice. Giant-cell arteritis and polymyalgia rheumatica. N. Engl. J. Med. 371: 50–57
  • Abd, T. T., D. J. Eapen, A. Bajpai, et al. 2011. The role of C-reactive protein as a risk predictor of coronary atherosclerosis: implications from the JUPITER trial. Curr. Atheroscler. Rep. 13: 154–161
  • Ciccia, F., R. Alessandro, A. Rizzo, et al. 2013. IL-33 is overexpressed in the inflamed arteries of patients with giant cell arteritis. Ann. Rheum. Dis. 72: 258–264
  • Wagner, A. D., J. Bjornsson, G. B. Bartley, et al. 1996. Interferon-gamma-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located distant from the site of pathology. Am. J. Pathol. 148: 1925–1933
  • El Kasmi, K. C., S. C. Pugliese, S. R. Riddle, et al. 2014. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J. Immunol. 193: 97–609
  • Rateri, D. L., D. A. Howatt, J. J. Moorleghen, et al. 2011. Prolonged infusion of angiotensin II in apoE(−/−) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm. Am. J. Pathol. 179: 1542–1548
  • Ohlsson, S. M., C. P. Linge, B. Gullstrand, et al. 2014. Serum from patients with systemic vasculitis induces alternatively activated macrophage M2c polarization. Clin. Immunol. 152: 10–19
  • Miller, Y. I., S. H. Choi, P. Wiesner, et al. 2011. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108: 235–248
  • Jennette, J. C., R. J. Falk, P. Hu, and H. Xiao. 2013. Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annu. Rev. Pathol. 8: 139–160
  • Hans, C. P., S. N. Koenig, N. Huang, et al. 2012. Inhibition of Notch1 signaling reduces abdominal aortic aneurysm in mice by attenuating macrophage-mediated inflammation. Arterioscler. Thromb. Vasc. Biol. 32: 3012–3023
  • Takahashi, K., T. Oharaseki, and Y. Yokouchi. 2011. Pathogenesis of Kawasaki disease. Clin. Exp. Immunol. 164 Suppl 1: 20–22
  • Arnaud, L., J. Haroche, A. Mathian, et al. 2011. Pathogenesis of Takayasu's arteritis: a 2011 update. Autoimmun. Rev. 11: 61–67
  • Ait-Oufella, H., S. Taleb, Z. Mallat, and A. Tedgui. 2011. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. 31: 969–979
  • Stoneman, V. E., and M. R. Bennett. 2009. Role of Fas/Fas-L in vascular cell apoptosis. J. Cardiovasc. Pharmacol. 53: 100–108
  • Barks, J. L., J. J. McQuillan, and M. F. Iademarco. 1997. TNF-alpha and IL-4 synergistically increase vascular cell adhesion molecule-1 expression in cultured vascular smooth muscle cells. J. Immunol. 159: 4532–4538
  • Wang, S. C., S. B. Kanner, J. A. Ledbetter, et al. 1995. Evidence for LFA-1/ICAM-1 dependent stimulation of protein tyrosine phosphorylation in human B lymphoid cell lines during homotypic adhesion. J. Leukoc. Biol. 57: 343–351
  • Simionescu, M. 2009. Cellular dysfunction in inflammatory-related vascular disorders' review series. The inflammatory process: a new dimension of a 19 century old story. J. Cell. Mol. Med. 13: 4291–4292
  • Esmon, C. T. 2004. The impact of the inflammatory response on coagulation. Thromb. Res. 114: 321–327
  • Kruithof, E. K. 2008. Regulation of plasminogen activator inhibitor type 1 gene expression by inflammatory mediators and statins. Thromb. Haemost. 100: 969–975
  • Mallat, Z., A. Gojova, C. Marchiol-Fournigault, et al. 2001. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89: 930–934
  • Bode, J. G., C. Ehlting, and D. Haussinger. 2012. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell. Signal. 24: 1185–1194
  • Colonnello, J. S., K. A. Hance, M. L. Shames, et al. 2003. Transient exposure to elastase induces mouse aortic wall smooth muscle cell production of MCP-1 and RANTES during development of experimental aortic aneurysm. J. Vasc. Surg. 38: 138–146
  • Gerszten, R. E., E. A. Garcia-Zepeda, Y. C. Lim, et al. 1999. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398: 718–723
  • Cheung, Y. F., K. O, S. C. Tam, and Y. L. Siow. 2005. Induction of MCP1, CCR2, and iNOS expression in THP-1 macrophages by serum of children late after Kawasaki disease. Pediatr. Res. 58: 1306–1310
  • Nazari-Jahantigh, M., Y. Wei, H. Noels, et al. 2012. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest. 122: 4190–4202
  • Adema, G. J., F. Hartgers, R. Verstraten, et al. 1997. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature 387: 713–717
  • Newby, A. C. 2005. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85: 1–31
  • Sakakura, K., M. Nakano, F. Otsuka, et al. 2013. Pathophysiology of atherosclerosis plaque progression. Heart Lung. Circ. 22: 399–411
  • Yan, Z. Q., and G. K. Hansson. 2007. Innate immunity, macrophage activation, and atherosclerosis. Immunol. Rev. 219: 187–203
  • Daugherty, A., and L. A. Cassis. 2004. Mouse models of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24: 429–434
  • Burns, J. C., and M. P. Glode. 2004. Kawasaki syndrome. Lancet 364: 533–544
  • Weyand, C. M., and J. J. Goronzy. 2003. Medium- and large-vessel vasculitis. N. Engl. J. Med. 349: 160–169
  • Kaiser, M., B. Younge, J. Bjornsson, et al. 1999. Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. Am. J. Pathol. 155: 765–774
  • Kaiser, M., C. M. Weyand, J. Bjornsson, and J. J. Goronzy. 1998. Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. Arthritis Rheum. 41: 623–633
  • Manea, A., and M. Simionescu. 2012. Nox enzymes and oxidative stress in atherosclerosis. Front. Biosci. (Schol Ed). 4: 651–670
  • Rittner, H. L., M. Kaiser, A. Brack, et al. 1999. Tissue-destructive macrophages in giant cell arteritis. Circ. Res. 84: 1050–1058
  • Rittner, H. L., V. Hafner, P. A. Klimiuk, et al. 1999. Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. J. Clin. Invest. 103: 1007–1013
  • Tavakoli, S., and R. Asmis. 2012. Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid. Redox. Signal. 17: 1785–1795
  • Qiao, M., Q. Zhao, C. F. Lee, et al. 2009. Thiol oxidative stress induced by metabolic disorders amplifies macrophage chemotactic responses and accelerates atherogenesis and kidney injury in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 29: 1779–1786
  • McPhillips, K., W. J. Janssen, M. Ghosh, et al. 2007. TNF-alpha inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms. J. Immunol. 178: 8117–8126
  • Steinberg, D., and J. L. Witztum. 2002. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105: 2107–2111
  • Tian, W., X. Jiang, R. Tamosiuniene, Y. K. Sung, et al. 2013. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci. Transl. Med. 5: 200ra117
  • Andres, V., O. M. Pello, and C. Silvestre-Roig. 2012. Macrophage proliferation and apoptosis in atherosclerosis. Curr. Opin. Lipidol. 23: 429–438
  • Seimon, T. A., M. J. Nadolski, X. Liao, et al. 2010. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell. Metab. 12: 467–482
  • Tabas, I. 2007. Apoptosis and efferocytosis in mouse models of atherosclerosis. Curr. Drug Targets 8: 1288–1296
  • Tabas, I. 2005. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25: 2255–2264
  • Clarke, M. C., N. Figg, J. J. Maguire, et al. 2006. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12: 1075–1080
  • Imanishi, T., D. K. Han, L. Hofstra, et al. 2002. Apoptosis of vascular smooth muscle cells is induced by Fas ligand derived from monocytes/macrophage. Atherosclerosis 161: 143–151
  • Seshiah, P. N., D. J. Kereiakes, S. S. Vasudevan, et al. 2002. Activated monocytes induce smooth muscle cell death: role of macrophage colony-stimulating factor and cell contact. Circulation 105: 174–180
  • Yao, P. M., and I. Tabas. 2000. Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J. Biol. Chem. 275: 23807–23813
  • Tabas, I. 2009. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid. Redox. Signal. 11: 2333–2339
  • Schrijvers, D. M., G. R. De Meyer, A. G. Herman, and W. Martinet. 2007. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc. Res. 73: 470–480
  • Maderna, P., and C. Godson. 2003. Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim. Biophys. Acta 1639: 141–151
  • Harper, L., P. Cockwell, D. Adu, and C. O. Savage. 2001. Neutrophil priming and apoptosis in anti-neutrophil cytoplasmic autoantibody-associated vasculitis. Kidney Int. 59: 1729–1738
  • van Rossum, A. P., F. Fazzini, P. C. Limburg, et al. 2004. The prototypic tissue pentraxin PTX3, in contrast to the short pentraxin serum amyloid P, inhibits phagocytosis of late apoptotic neutrophils by macrophages. Arthritis Rheum. 50: 2667–2674
  • Gabillet, J., A. Millet, M. Pederzoli-Ribeil, et al. 2012. Proteinase 3, the autoantigen in granulomatosis with polyangiitis, associates with calreticulin on apoptotic neutrophils, impairs macrophage phagocytosis, and promotes inflammation. J. Immunol. 189: 2574–2583
  • Witztum, J. L., and A. H. Lichtman. 2014. The influence of innate and adaptive immune responses on atherosclerosis. Annu. Rev. Pathol. 9: 73–102
  • Helming, L., and S. Gordon. 2009. Molecular mediators of macrophage fusion. Trends Cell. Biol. 19: 514–522
  • Wynn, T. A., A. Chawla, and J. W. Pollard. 2013. Macrophage biology in development, homeostasis and disease. Nature 496: 445–455
  • Smith, E., K. M. Prasad, M. Butcher, et al. 2010. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121: 1746–1755
  • Gan, P. Y., O. M. Steinmetz, D. S. Tan, et al. 2010. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J. Am. Soc. Nephrol. 21: 925–931
  • Schulte, D. J., A. Yilmaz, K. Shimada, et al. 2009. Involvement of innate and adaptive immunity in a murine model of coronary arteritis mimicking Kawasaki disease. J. Immunol. 183: 5311–5318
  • Lee, T., J. W. Seo, B. E. Sumpio, and S. J. Kim. 2003. Immunobiologic analysis of arterial tissue in Buerger's disease. Eur. J. Vasc. Endovasc. Surg. 25: 451–457
  • Kobayashi, M., M. Ito, A. Nakagawa, et al. 1999. Immunohistochemical analysis of arterial wall cellular infiltration in Buerger's disease (endarteritis obliterans). J. Vasc. Surg. 29: 451–458
  • Huang, X. R., P. G. Tipping, J. Apostolopoulos, et al. 1997. Mechanisms of T cell-induced glomerular injury in anti-glomerular basement membrane (GBM) glomerulonephritis in rats. Clin. Exp. Immunol. 109: 134–142
  • Sheikh-Hamad, D. 2010. Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium. Am. J. Physiol. Renal. Physiol. 298: F248–F254
  • Duffield, J. S., P. G. Tipping, T. Kipari, et al. 2005. Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am. J. Pathol. 167: 1207–1219
  • Tahara, N., J. Mukherjee, H. J. de Haas, et al. 2014. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 20: 215–219
  • Blockmans, D. 2011. PET in vasculitis. Ann. N. Y. Acad. Sci. 1228: 64–70
  • O'Neill, L. A., and D. G. Hardie. 2013. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493: 346–355
  • Jezovnik, M. K., N. Zidar, L. Lezaic, et al. 2014. Identification of inflamed atherosclerotic lesions in vivo using PET-CT. Inflammation 37: 426–434
  • Tawakol, A., R. Q. Migrino, G. G. Bashian, et al. 2006. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48: 1818–1824
  • Sigovan, M., A. Bessaad, H. Alsaid, et al. 2010. Assessment of age modulated vascular inflammation in ApoE−/− mice by USPIO-enhanced magnetic resonance imaging. Invest. Radiol. 45: 702–707
  • Kooi, M. E., V. C. Cappendijk, K. B. Cleutjens, et al. 2003. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107: 2453–2458
  • Osborn, E. A., and F. A. Jaffer. 2013. The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc. Imaging 6: 1327–1341
  • Croons, V., W. Martinet, and G. R. De Meyer. 2010. Selective removal of macrophages in atherosclerotic plaques as a pharmacological approach for plaque stabilization: benefits versus potential complications. Curr. Vasc. Pharmacol. 8: 495–508
  • Calin, M. V., I. Manduteanu, E. Dragomir, et al. 2009. Effect of depletion of monocytes/macrophages on early aortic valve lesion in experimental hyperlipidemia. Cell. Tissue Res. 336: 237–248
  • Schulz, C., and S. Massberg. 2014. Atherosclerosis-multiple pathways to lesional macrophages. Sci. Transl. Med. 6: 239ps232
  • Tardif, J. C., J. J. McMurray, E. Klug, et al. 2008. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet 371: 1761–1768
  • Yuan, F., D. E. Tabor, R. K. Nelson, et al. 2013. A dexamethasone prodrug reduces the renal macrophage response and provides enhanced resolution of established murine lupus nephritis. PLoS One 8: e81483
  • Missiou, A., N. Kostlin, N. Varo, et al. 2010. Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall. Circulation 121: 2033–2044
  • Kirsch, T., A. Woywodt, J. Klose, et al. 2010. Endothelial-derived thrombospondin-1 promotes macrophage recruitment and apoptotic cell clearance. J. Cell. Mol. Med. 14: 1922–1934
  • Jenkins, S. J., D. Ruckerl, G. D. Thomas, et al. 2013. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210: 2477–2491
  • Ridker, P. M., T. Thuren, A. Zalewski, and P. Libby. 2011. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 162: 597–605
  • Callegari, A., Y. Liu, C. C. White, et al. 2011. Gain and loss of function for glutathione synthesis: impact on advanced atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31: 2473–2482
  • Rayner, K. J., F. J. Sheedy, C. C. Esau, et al. 2011. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121: 2921–2931
  • Yvan-Charvet, L., C. Welch, T. A. Pagler, et al. 2008. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 118: 1837–1847
  • Piggott, K., J. Deng, K. Warrington, et al. 2011. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation 123: 309–318
  • Pan, H., J. W. Myerson, L. Hu, et al. 2013. Programmable nanoparticle functionalization for in vivo targeting. FASEB J. 27:255–264
  • Leuschner, F., P. Dutta, R. Gorbatov, et al. 2011. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29: 1005–1010
  • Spears, L. D., B. Razani, and C. F. Semenkovich. 2013. Interleukins and atherosclerosis: a dysfunctional family grows. Cell. Metab. 18: 614–616
  • Singh, M. V., M. W. Chapleau, S. C. Harwani, and F. M. Abboud. 2014. The immune system and hypertension. Immunol. Res. 59: 243–253
  • Mihm, B., M. Bergmann, W. Bruck, and S. Probst-Cousin. 2013. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system. Neuropathology 34: 236–242
  • Wang, H., L. Li, L. Wang, et al. 2012. Comparison of clinical and pathological characteristics of isolated aortitis and Takayasu arteritis with ascending aorta involvement. J. Clin. Pathol. 65: 362–366
  • Han, Y., F. Y. Ma, G. H. Tesch, et al. 2011. c-fms blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. Lab. Invest. 91: 978–991
  • Rastaldi, M. P., F. Ferrario, A. Crippa, et al. 2000. Glomerular monocyte-macrophage features in ANCA-positive renal vasculitis and cryoglobulinemic nephritis. J. Am. Soc. Nephrol. 11: 2036–2043
  • Ketha, S. S., and L. T. Cooper. 2013. The role of autoimmunity in thromboangiitis obliterans (Buerger's disease). Ann. N. Y. Acad. Sci. 1285: 15–25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.