461
Views
59
CrossRef citations to date
0
Altmetric
Original Article

MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis

, , , , , , & show all
Pages 369-378 | Received 20 Nov 2014, Accepted 21 Feb 2015, Published online: 10 Apr 2015

References

  • Jinnin, M. 2010. Mechanisms of skin fibrosis in systemic sclerosis. J. Dermatol. 37: 11–25
  • Kahaleh, M. B., and E. C. LeRoy. 1999. Autoimmunity and vascular involvement in systemic sclerosis (SSc). Autoimmunity 31: 195–214
  • Muller-Ladner, U., O. Distler, L. Ibba-Manneschi, et al. 2009. Mechanisms of vascular damage in systemic sclerosis. Autoimmunity 42: 587–595
  • Varga, J., and D. Abraham. 2007. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117: 557–567
  • Leroy, E. C., E. A. Smith, M. B. Kahaleh, et al. 1989. A strategy for determining the pathogenesis of systemic sclerosis. Is transforming growth factor beta the answer? Arthritis Rheum. 32: 817–825
  • Kendall, R. T., and C. A. Feghali-Bostwick. 2014. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol. 5: 123 (1–13)
  • Kissin, E., and J. H. Korn. 2002. Apoptosis and myofibroblasts in the pathogenesis of systemic sclerosis. Curr. Rheumatol. Rep. 4: 129–135
  • Sandorfi, N., and S. A. Jimenez. 2005. Scleroderma fibroblast survival in Aktion. J. Invest. Dermatol. 124: viii–xi
  • Cotter, T. G. 2009. Apoptosis and cancer: the genesis of a research field. Nat. Rev. Cancer 9: 501–507
  • Fadeel, B., and S. Orrenius. 2005. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258: 479–517
  • Kerr, J. F., A. H. Wyllie, and A. R. Currie. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239–257
  • Michlewska, S., A. McColl, A. G. Rossi, et al. 2007. Clearance of dying cells and autoimmunity. Autoimmunity 40: 267–273
  • Dewson, G. K. R. M. 2010. Bcl-2 family-regulated apoptosis in health and disease. Cell Health Cytoskeleton 2: 9–22
  • Kuwana, T., and D. D. Newmeyer. 2003. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol. 15: 691–699
  • Dong, S., W. Ma, B. Hao, et al. 2014. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int. J. Clin. Exp. Pathol. 7: 565–574
  • Hassan, M., H. Watari, A. AbuAlmaaty, et al. 2014. Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014: 150845
  • Zhou, Y., X. Huang, L. Hecker, et al. 2013. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Invest. 123: 1096–1108
  • Basu, A., and S. Haldar. 1998. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol. Hum. Reprod. 4: 1099–1109
  • Oltvai, Z. N., C. L. Milliman, and S. J. Korsmeyer. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619
  • Chipuk, J. E., and D. R. Green. 2008. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18: 157–164
  • Harnois, D. M., F. G. Que, A. Celli, et al. 1997. Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatology 26: 884–890
  • Annis, M. G., E. L. Soucie, P. J. Dlugosz, et al. 2005. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J. 24: 2096–2103
  • Korsmeyer, S. J., M. C. Wei, M. Saito, et al. 2000. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7: 1166–1173
  • Friedman, R. C., K. K. Farh, C. B. Burge, and D. P. Bartel. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92–105
  • Babalola, O., A. Mamalis, H. Lev-Tov, and J. Jagdeo. 2013. The role of microRNAs in skin fibrosis. Arch. Dermatol. Res. 305: 763–776
  • Banerjee, J., and C. K. Sen. 2013. MicroRNAs in skin and wound healing. Methods Mol. Biol. 936: 343–356
  • Zeng, L., J. Cui, H. Wu, and Q. Lu. 2014. The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity 47: 419–429
  • Maurer, B., J. Stanczyk, A. Jungel, et al. 2010. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62: 1733–1743
  • Pandit, K. V., J. Milosevic, and N. Kaminski. 2011. MicroRNAs in idiopathic pulmonary fibrosis. Transl. Res. 157: 191–199
  • Qin, W., A. C. Chung, X. R. Huang, et al. 2011. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22: 1462–1474
  • Xiao, J., X. M. Meng, X. R. Huang, et al. 2012. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol. Ther. 20: 1251–1260
  • Zhang, Y., X. R. Huang, L. H. Wei, et al. 2014. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol. Ther. 22: 974–985
  • Jiang, H., G. Zhang, J. H. Wu, and C. P. Jiang. 2014. Diverse roles of miR-29 in cancer (review). Oncol. Rep. 31: 1509–1516
  • Xiong, Y., J. H. Fang, J. P. Yun, et al. 2010. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51: 836–845
  • Zhu, H., H. Luo, Y. Li, et al. 2013. MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J. Clin. Immunol. 33: 1100–1109
  • Wight, T. N., and S. Potter-Perigo. 2011. The extracellular matrix: an active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 301: G950–G955
  • Roderburg, C., G. W. Urban, K. Bettermann, et al. 2011. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53: 209–218
  • van Rooij, E., L. B. Sutherland, J. E. Thatcher, et al. 2008. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA 105: 13027–13032
  • Ogawa, T., M. Iizuka, Y. Sekiya, et al. 2009. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem. Biophys. Res. Commun. 391: 316–321
  • Liu Y., N. E. Taylor, L. Lu, et al. 2010. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension 55: 974–982
  • Wang, B., R. Komers, R. Carew, et al. 2012. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23: 252–265
  • He, Y., C. Huang, X. Lin, and J. Li. 2013. MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie 95: 1355–1359
  • Fulda, S. 2010. Evasion of apoptosis as a cellular stress response in cancer. Int. J. Cell. Biol. 2010: 370835
  • Tait, S. W., M. J. Parsons, F. Llambi, et al. 2010. Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev. Cell. 18: 802–813
  • Volkmann, N., F. M. Marassi, D. D. Newmeyer, and D. Hanein. 2014. The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ. 21: 206–215
  • Fiebig, A. A., W. Zhu, C. Hollerbach, et al. 2006. Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 6: 213
  • Park, D., A. T. Magis, R. Li, et al. 2013. Novel small-molecule inhibitors of Bcl-XL to treat lung cancer. Cancer Res. 73: 5485–5496
  • Chi, K. N., M. E. Gleave, R. Klasa, et al. 2001. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin. Cancer Res. 7: 3920–3927
  • Gong, W., A. Pecci, S. Roth, et al. 1998. Transformation dependent susceptibility of rat hepatic stellate cells to apoptosis induced by soluble Fas ligand. Hepatology 28: 492–502
  • Guinee D. Jr., E. Brambilla, M. Fleming, et al. 1997. The potential role of BAX and BCL-2 expression in diffuse alveolar damage. Am. J. Pathol. 151: 999–1007
  • Takehara, T., T. Tatsumi, T. Suzuki, et al. 2004. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology 127: 1189–1197
  • Arora, P. D., and C. A. McCulloch. 1999. The deletion of transforming growth factor-beta-induced myofibroblasts depends on growth conditions and actin organization. Am. J. Pathol. 155: 2087–2099
  • Zhang, H. Y., and S. H. Phan. 1999. Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am. J. Respir. Cell. Mol. Biol. 21: 658–665
  • Santiago, B., M. Galindo, M. Rivero, and J. L. Pablos. 2001. Decreased susceptibility to Fas-induced apoptosis of systemic sclerosis dermal fibroblasts. Arthritis Rheum. 44: 1667–1676
  • Greenwel, P., S. Tanaka, D. Penkov, et al. 2000. Tumor necrosis factor alpha inhibits type I collagen synthesis through repressive CCAAT/enhancer-binding proteins. Mol. Cell Biol. 20: 912–918
  • Rippe, R. A., L. W. Schrum, B. Stefanovic, et al. 1999. NF-kappaB inhibits expression of the alpha1(I) collagen gene. DNA Cell Biol. 18: 751–761
  • Voloshenyuk, T. G., A. D. Hart, E. Khoutorova, and J. D. Gardner. 2011. TNF-αlpha increases cardiac fibroblast lysyl oxidase expression through TGF-beta and PI3Kinase signaling pathways. Biochem. Biophys. Res. Commun. 413: 370–375
  • Sullivan, D. E., M. Ferris, H. Nguyen, et al. 2009. TNF-αlpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J. Cell. Mol. Med. 13: 1866–1876
  • Li, Y. Y., Y. Q. Feng, T. Kadokami, et al. 2000. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc. Natl. Acad. Sci. USA 97: 12746–12751
  • Trackman, P. C. 2005. Diverse biological functions of extracellular collagen processing enzymes. J. Cell. Biochem. 96: 927–937
  • Chen, T., Z. Li, J. Tu, et al. 2001. MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells. FEBS Lett. 585: 657–663

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.