1,855
Views
65
CrossRef citations to date
0
Altmetric
Review Article

Interleukin-17 in systemic lupus erythematosus: A comprehensive review

, , , , &
Pages 353-361 | Received 23 Oct 2014, Accepted 31 Mar 2015, Published online: 20 Apr 2015

References

  • Pan, Y., and A. H. Sawalha. 2009. Epigenetic regulation and the pathogenesis of systemic lupus erythematosus. Transl. Res. 153: 4–10
  • Yap, D. Y., and K. N. Lai. 2013. The role of cytokines in the pathogenesis of systemic lupus erythematosus-from bench to bedside. Nephrology. 18: 243–255
  • Marwaha, A. K., N. J. Leung, A. N. McMurchy, and M. K. Levings. 2012. TH17 cells in autoimmunity and immunodeficiency: protective or pathogenic? Front. Immunol. 3: 129
  • Jin, D., L. Zhang, J. Zheng, and Y. Zhao. 2008. The inflammatory Th 17 subset in immunity against self and non-self antigens. Autoimmunity. 41: 154–162
  • Miyake, K., M. Akahoshi, and H. Nakashima. 2011. Th subset balance in lupus nephritis. J. Biomed. Biotechnol. 2011: 980286
  • Abou Ghanima, A. T., G. G. Elolemy, S. S. Ganeb, et al. 2012. Role of T helper 17 cells in the pathogenesis of systemic lupus erythematosus. Egypt J. Immunol./Egypt Assoc. Immunol. 19: 25–33
  • Spuls, P. I., and L. Hooft. 2012. Brodalumab and ixekizumab, anti-interleukin-17-receptor antibodies for psoriasis: a critical appraisal. Br. J. Dermatol. 167: 710–713; discussion 714–715
  • Genovese, M. C., P. Durez, H. B. Richards, et al. 2013. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann. Rheum. Dis. 72: 863–869
  • Baeten, D., X. Baraliakos, J. Braun, et al. 2013. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 382: 1705–1713
  • Rouvier, E., M. F. Luciani, M. G. Mattei, et al. 1993. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150: 5445–5456
  • Kolls, J. K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity. 21: 467–476
  • Yao, Z., M. K. Spriggs, J. M. Derry, et al. 1997. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine. 9: 794–800
  • Aggarwal, S., N. Ghilardi, M. H. Xie, et al. 2003. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278: 1910–1914
  • Yao, Z., S. L. Painter, W. C. Fanslow, et al. 1995. Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155: 5483–5486
  • Pernis, A. B. 2009. Th17 cells in rheumatoid arthritis and systemic lupus erythematosus. J. Intern. Med. 265: 644–652
  • Kurasawa, K., K. Hirose, H. Sano, et al. 2000. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum. 43: 2455–2463
  • Adami, S., A. Cavani, F. Rossi, and G. Girolomoni. 2014. The role of interleukin-17A in psoriatic disease. BioDrugs: Clin. Immunother. Biopharm. Gene Ther. 28: 487–497
  • Nurieva, R. I., Y. Chung, D. Hwang, et al. 2008. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 29: 138–149
  • Mosmann, T. R., and R. L. Coffman. 1989. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7: 145–173
  • Fontenot, J. D., and A. Y. Rudensky. 2005. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6: 331–337
  • Harrington, L. E., R. D. Hatton, P. R. Mangan, et al. 2005. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6: 1123–1132
  • Korn, T., M. Oukka, V. Kuchroo, and E. Bettelli. 2007. Th17 cells: effector T cells with inflammatory properties. Semin. Immunol. 19: 362–371
  • Crispin, J. C., M. Oukka, G. Bayliss, et al. 2008. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181: 8761–8766
  • Henriques, A., L. Ines, M. L. Pais, et al. 2012. Th17 cells in systemic lupus erythematosus share functional features with Th17 cells from normal bone marrow and peripheral tissues. Clin. Rheumatol. 31: 483–491
  • Yu, B., M. Guan, Y. Peng, et al. 2011. Copy number variations of interleukin-17F, interleukin-21, and interleukin-22 are associated with systemic lupus erythematosus. Arthritis Rheum. 63: 3487–3492
  • Balanescu, P., E. Balanescu, C. Tanasescu, et al. 2010. T helper 17 cell population in lupus erythematosus. Rom J. Intern. Med. = Revue. Roum. Med. Interne. 48: 255–259
  • Rana, A., R. W. Minz, R. Aggarwal, et al. 2012. Gene expression of cytokines (TNF-alpha, IFN-gamma), serum profiles of IL-17 and IL-23 in paediatric systemic lupus erythematosus. Lupus. 21: 1105–1112
  • Torricelli, M., F. Bellisai, R. Novembri, et al. 2011. High levels of maternal serum IL-17 and activin A in pregnant women affected by systemic lupus erythematosus. Am. J. Reprod. Immunol. 66: 84–89
  • Chen, X. Q., Y. C. Yu, H. H. Deng, et al. 2010. Plasma IL-17A is increased in new-onset SLE patients and associated with disease activity. J. Clin. Immunol. 30: 221–225
  • Ballantine, L. E., J. Ong, A. Midgley, et al. 2014. The pro-inflammatory potential of T cells in juvenile-onset systemic lupus erythematosus. Pediatr. Rheumatol. Online J. 12: 4
  • Dolff, S., D. Quandt, B. Wilde, et al. 2010. Increased expression of costimulatory markers CD134 and CD80 on interleukin-17 producing T cells in patients with systemic lupus erythematosus. Arthritis Res. Ther. 12: R150
  • Vincent, F. B., M. Northcott, A. Hoi, et al. 2013. Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res. Ther. 15: R97
  • Mok, M. Y., H. J. Wu, Y. Lo, and C. S. Lau. 2010. The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J. Rheumatol. 37: 2046–2052
  • Biswas, P. S., K. Kang, S. Gupta, et al. 2012. A murine autoimmune model of rheumatoid arthritis and systemic lupus erythematosus associated with deregulated production of IL-17 and IL-21. Methods Mol. Biol. 900: 233–251
  • Wen, Z., L. Xu, W. Xu, et al. 2013. Interleukin-17 expression positively correlates with disease severity of lupus nephritis by increasing anti-double-stranded DNA antibody production in a lupus model induced by activated lymphocyte derived DNA. PLoS One. 8: e58161
  • Toy, D., D. Kugler, M. Wolfson, et al. 2006. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177: 36–39
  • Chen, Z., and J. J. O'Shea. 2008. Regulation of IL-17 production in human lymphocytes. Cytokine. 41: 71–78
  • Robak, E., L. Kulczycka-Siennicka, Z. Gerlicz, et al. 2013. Correlations between concentrations of interleukin (IL)-17A, IL-17B and IL-17F, and endothelial cells and proangiogenic cytokines in systemic lupus erythematosus patients. Eur. Cytokine Network. 24: 60–68
  • Tanasescu, C., E. Balanescu, P. Balanescu, et al. 2010. IL-17 in cutaneous lupus erythematosus. Eur. J. Intern. Med. 21: 202–207
  • Hedrich, C. M., T. Rauen, K. Kis-Toth, et al. 2012. cAMP-responsive element modulator alpha (CREMalpha) suppresses IL-17F protein expression in T lymphocytes from patients with systemic lupus erythematosus (SLE). J. Biol. Chem. 287: 4715–4725
  • Chen, D. Y., Y. M. Chen, M. C. Wen, et al. 2012. The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis. Lupus. 21: 1385–1396
  • Wang, Y., S. Ito, Y. Chino, et al. 2010. Laser microdissection-based analysis of cytokine balance in the kidneys of patients with lupus nephritis. Clin. Exp. Immunol. 159: 1–10
  • Lu, X. Y., C. Q. Zhu, J. Qian, et al. 2010. Intrathecal cytokine and chemokine profiling in neuropsychiatric lupus or lupus complicated with central nervous system infection. Lupus. 19: 689–695
  • Xing, Q., B. Wang, H. Su, et al. 2012. Elevated Th17 cells are accompanied by FoxP3 + Treg cells decrease in patients with lupus nephritis. Rheumatol. Int. 32: 949–958
  • Kwan, B. C., L. S. Tam, K. B. Lai, et al. 2009. The gene expression of type 17 T-helper cell-related cytokines in the urinary sediment of patients with systemic lupus erythematosus. Rheumatology. 48: 1491–1497
  • Chung, Y., S. H. Chang, G. J. Martinez, et al. 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 30: 576–587
  • Dong, C. 2008. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8: 337–348
  • Manel, N., D. Unutmaz, and D. R. Littman. 2008. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat. Immunol. 9: 641–649
  • Rodig, S. J., M. A. Meraz, J. M. White, et al. 1998. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 93: 373–383
  • Heinrich, P. C., I. Behrmann, G. Muller-Newen, et al. 1998. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334: 297–314
  • Chen, Z., A. Laurence, Y. Kanno, et al. 2006. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl. Acad. Sci. USA 103: 8137–8142
  • Yang, X. O., A. D. Panopoulos, R. Nurieva, et al. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282: 9358–9363
  • Bettelli, E., T. Korn, and V. K. Kuchroo. 2007. Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19: 652–657
  • Dolff, S., W. H. Abdulahad, J. Westra, et al. 2011. Increase in IL-21 producing T-cells in patients with systemic lupus erythematosus. Arthritis Res. Ther. 13: R157
  • Gulen, M. F., Z. Kang, K. Bulek, et al. 2010. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity. 32: 54–66
  • Shaw, M. H., N. Kamada, Y. G. Kim, and G. Nunez. 2012. Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209: 251–258
  • Kurebayashi, Y., S. Nagai, A. Ikejiri, and S. Koyasu. 2013. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells. Genes Cells: Devot. Mol. Cell. Mech. 18: 247–265
  • Liu, H., S. Yao, S. M. Dann, et al. 2013. ERK differentially regulates Th17-and Treg-cell development and contributes to the pathogenesis of colitis. Eur. J. Immunol. 43: 1716–1726
  • Kurebayashi, Y., S. Nagai, A. Ikejiri, et al. 2012. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell. Rep. 1: 360–373
  • Molinero, L. L., A. Cubre, C. Mora-Solano, et al. 2012. T cell receptor/CARMA1/NF-kappaB signaling controls T-helper (Th) 17 differentiation. Proc. Natl. Acad. Sci. USA 109: 18529–18534
  • Janson, P. C., L. B. Linton, E. A. Bergman, et al. 2011. Profiling of CD4 + T cells with epigenetic immune lineage analysis. J. Immunol. 186: 92–102
  • Rauen, T., C. M. Hedrich, Y. T. Juang, et al. 2011. cAMP-responsive element modulator (CREM)alpha protein induces interleukin 17A expression and mediates epigenetic alterations at the interleukin-17A gene locus in patients with systemic lupus erythematosus. J. Biol. Chem. 286: 43437–43446
  • Li, Y., G. Chen, L. Ma, et al. 2012. Plasticity of DNA methylation in mouse T cell activation and differentiation. BMC Mol. Biol. 13: 16
  • Akimzhanov, A. M., X. O. Yang, and C. Dong. 2007. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. 282: 5969–5972
  • Wei, G., L. Wei, J. Zhu, et al. 2009. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4 + T cells. Immunity. 30: 155–167
  • Hedrich, C. M., J. C. Crispin, T. Rauen, et al. 2012. cAMP response element modulator alpha controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc. Natl. Acad. Sci. USA. 109: 16606–16611
  • Koga, T., C. M. Hedrich, M. Mizui, et al. 2014. CaMK4-dependent activation of AKT/mTOR and CREM-alpha underlies autoimmunity-associated Th17 imbalance. J. Clin. Investig. 124: 2234–2245
  • Apostolidis, S. A., T. Rauen, C. M. Hedrich, et al. 2013. Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. J. Biol. Chem. 288: 26775–26784
  • Isgro, J., S. Gupta, E. Jacek, et al. 2013. Enhanced rho-associated protein kinase activation in patients with systemic lupus erythematosus. Arthritis Rheum. 65: 1592–1602
  • Weaver, C. T., R. D. Hatton, P. R. Mangan, and L. E. Harrington. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25: 821–852
  • Woltman, A. M., S. de Haij, J. G. Boonstra, et al. 2000. Interleukin-17 and CD40-ligand synergistically enhance cytokine and chemokine production by renal epithelial cells. J. Am. Soc. Nephrol.: JASN. 11: 2044–2055
  • Gaffen, S. L. 2008. An overview of IL-17 function and signaling. Cytokine. 43: 402–407
  • Onishi, R. M., and S. L. Gaffen. 2010. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 129: 311–321
  • Dong, G., R. Ye, W. Shi, et al. 2003. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chin. Med. J. 116: 543–548
  • Doreau, A., A. Belot, J. Bastid, et al. 2009. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat. Immunol. 10: 778–785
  • Ahmed, S., and J. H. Anolik. 2010. B-cell biology and related therapies in systemic lupus erythematosus. Rheum. Dis. Clin. N. Am. 36: 109–130, viii–ix
  • Albanesi, C., A. Cavani, and G. Girolomoni. 1999. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J. Immunol. 162: 494–502
  • Schwarzenberger, P., W. Huang, P. Ye, et al. 2000. Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J. Immunol. 164: 4783–4789
  • Cohen, R. A., G. Bayliss, J. C. Crispin, et al. 2008. T cells and in situ cryoglobulin deposition in the pathogenesis of lupus nephritis. Clin. Immunol. 128: 1–7
  • Yang, J., Y. Chu, X. Yang, et al. 2009. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 60: 1472–1483
  • Fitzpatrick, L. R. 2013. Inhibition of IL-17 as a pharmacological approach for IBD. Int. Rev. Immunol. 32: 544–555
  • Langrish, C. L., Y. Chen, W. M. Blumenschein, et al. 2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201: 233–240
  • Sato, K., A. Suematsu, K. Okamoto, et al. 2006. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203: 2673–2682
  • Nakae, S., A. Nambu, K. Sudo, and Y. Iwakura. 2003. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171: 6173–6177
  • Ebihara, S., F. Date, Y. Dong, and M. Ono. 2014. Interleukin-17 is a critical target for the treatment of ankylosing enthesitis and psoriasis-like dermatitis in mice. Autoimmunity. 1–8 . [Epub ahead of print]. doi: 10.3109/08916934.2014.976630
  • Chao, C. C., S. J. Chen, I. E. Adamopoulos, et al. 2011. Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis. Autoimmunity. 44: 243–252
  • Papp, K. A., R. G. Langley, B. Sigurgeirsson, et al. 2013. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study. Br. J. Dermatol. 168: 412–421
  • Rich, P., B. Sigurgeirsson, D. Thaci, et al. 2013. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br. J. Dermatol. 168: 402–411
  • Paul, C., K. Reich, A. B. Gottlieb, et al. 2014. Secukinumab improves hand, foot and nail lesions in moderate-to-severe plaque psoriasis: subanalysis of a randomized, double-blind, placebo-controlled, regimen-finding phase 2 trial. J. Eur. Acad. Dermatol. Venereol.: JEADV. 28: 1670–1675
  • Sigurgeirsson, B., L. Kircik, O. Nemoto, et al. 2014. Secukinumab improves the signs and symptoms of moderate-to-severe plaque psoriasis in subjects with involvement of hands and/or feet: subanalysis of a randomized, double-blind, placebo-controlled, phase 2 dose-ranging study. J. Eur. Acad. Dermatol. Venereol.: JEADV. 28: 1127–1129
  • McInnes, I. B., J. Sieper, J. Braun, et al. 2014. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann. Rheum. Dis. 73: 349–356
  • Reichert, J. M. 2014. Antibodies to watch in 2014: mid-year update. mAbs. 6: 799–802
  • Chiricozzi, A., and J. G. Krueger. 2013. IL-17 targeted therapies for psoriasis. Expert Opin. Investig. Drugs. 22: 993–1005
  • Strand, V., M. Kosinski, A. Gnanasakthy, et al. 2014. Secukinumab treatment in rheumatoid arthritis is associated with incremental benefit in the clinical outcomes and HRQoL improvements that exceed minimally important thresholds. Health Qual. Life. Outcomes. 12: 31
  • Genovese, M. C., P. Durez, H. B. Richards, et al. 2014. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J. Rheumatol. 41: 414–421
  • Kellner, H. 2013. Targeting interleukin-17 in patients with active rheumatoid arthritis: rationale and clinical potential. Ther. Adv. Musculoskelet. Dis. 5: 141–152
  • Her, M., and A. Kavanaugh. 2013. Treatment of spondyloarthropathy: the potential for agents other than TNF inhibitors. Curr. Opin. Rheumatol. 25: 455–459
  • Deiss, A., I. Brecht, A. Haarmann, and M. Buttmann. 2013. Treating multiple sclerosis with monoclonal antibodies: a 2013 update. Expert. Rev. Neurother. 13: 313–335
  • Dick, A. D., I. Tugal-Tutkun, S. Foster, et al. 2013. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 120: 777–787
  • Elain, G., K. Jeanneau, A. Rutkowska, et al. 2014. The selective anti-IL17A monoclonal antibody secukinumab (AIN457) attenuates IL17A-induced levels of IL6 in human astrocytes. Glia. 62: 725–735
  • Kaser, A. 2014. Not all monoclonals are created equal-lessons from failed drug trials in Crohn's disease. Best. Pract. Res. Clin. Gastroenterol. 28: 437–449
  • McLean, L. P., R. K. Cross, and T. Shea-Donohue. 2013. Combined blockade of IL-17A and IL-17F may prevent the development of experimental colitis. Immunotherapy. 5: 923–925
  • Wedebye Schmidt, E. G., H. L. Larsen, N. N. Kristensen, et al. 2013. TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm. Bowel. Dis. 19: 1567–1576
  • Hsu, H. C., P. Yang, J. Wang, et al. 2008. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9: 166–175
  • Edgerton, C., J. C. Crispin, C. M. Moratz, et al. 2009. IL-17 producing CD4 + T cells mediate accelerated ischemia/reperfusion-induced injury in autoimmunity-prone mice. Clin. Immunol. 130: 313–321
  • Xiong, W., and R. G. Lahita. 2014. Pragmatic approaches to therapy for systemic lupus erythematosus. Nat. Rev. Rheumatol. 10: 97–107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.