523
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Distinct effects of mycophenolate mofetil and cyclophosphamide on renal fibrosis in NZBWF1/J mice

, , &
Pages 471-487 | Received 22 Nov 2014, Accepted 17 May 2015, Published online: 23 Jun 2015

References

  • Cameron, J. S. 1999. Lupus nephritis. J. Am. Soc. Nephrol. 10: 413–424
  • Austin, H. A. III, L. R. Muenz, K. M. Joyce, et al. 1984. Diffuse proliferative lupus nephritis: identification of specific pathologic features affecting renal outcome. Kidney Int. 25: 689–695
  • Boumpas, D. T., H. A. AustinIII, E. M. Vaughn, et al. 1992. Controlled trial of pulse methylprednisolone versus two regimens of pulse cyclophosphamide in severe lupus nephritis. Lancet. 340: 741–745
  • Chan, T. M., F. K. Li, C. S. Tang, et al. 2000. Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. Hong Kong-Guangzhou Nephrology Study Group. N. Engl. J. Med. 343: 1156–1162
  • Illei, G. G., H. A. Austin, M. Crane, et al. 2001. Combination therapy with pulse cyclophosphamide plus pulse methylprednisolone improves long-term renal outcome without adding toxicity in patients with lupus nephritis. Ann. Intern. Med. 135: 248–257
  • Contreras, G., V. Pardo, B. Leclercq, et al. 2004. Sequential therapies for proliferative lupus nephritis. N. Engl. J. Med. 350: 971–980
  • Appel, G. B., G. Contreras, M. A. Dooley, et al. 2009. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J. Am. Soc. Nephrol. 20: 1103–1112
  • Chan, T. M., K. C. Tse, C. S. Tang, et al. 2005. Long-term study of mycophenolate mofetil as continuous induction and maintenance treatment for diffuse proliferative lupus nephritis. J. Am. Soc. Nephrol. 16: 1076–1084
  • Baer, P. C., S. Gauer, I. A. Hauser, et al. 2000. Effects of mycophenolic acid on human renal proximal and distal tubular cells in vitro. Nephrol. Dial. Transplant. 15: 184–190
  • Huang, Y., Z. Liu, H. Huang, et al. 2005. Effects of mycophenolic acid on endothelial cells. Int. Immunopharmacol. 5: 1029–1039
  • Heinz, C., T. Hudde, K. Heise, and K. P. Steuhl. 2002. Antiproliferative effect of mycophenolate mofetil on cultured human Tenon fibroblasts. Graefes Arch. Clin. Exp. Ophthalmol. 240: 408–414
  • Hauser, I. A., L. Renders, H. H. Radeke, et al. 1999. Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol. Dial. Transplant. 14: 58–63
  • Yung, S., Q. Zhang, C. Z. Zhang, et al. 2009. Anti-DNA antibody induction of protein kinase C phosphorylation and fibronectin synthesis in human and murine lupus and the effect of mycophenolic acid. Arthritis Rheum. 60: 2071–2082
  • Dubus, I., B. Vendrely, I. Christophe, et al. 2002. Mycophenolic acid antagonizes the activation of cultured human mesangial cells. Kidney Int. 62: 857–867
  • Yung, S., C. Y. Ng, S. K. Ho, et al. 2015. Anti-dsDNA antibody induces soluble fibronectin secretion by proximal renal tubular epithelial cells and downstream increase of TGF-beta1 and collagen synthesis. J. Autoimmun. 58: 111–122
  • Badid, C., M. Vincent, B. McGregor, et al. 2000. Mycophenolate mofetil reduces myofibroblast infiltration and collagen III deposition in rat remnant kidney. Kidney Int. 58: 51–61
  • Yap, D. Y., C. S. Tang, M. K. Ma, et al. 2012. Survival analysis and causes of mortality in patients with lupus nephritis. Nephrol. Dial. Transplant. 27: 3248–3254
  • Lui, S. L., R. Tsang, D. Wong, et al. 2002. Effect of mycophenolate mofetil on severity of nephritis and nitric oxide production in lupus-prone MRL/lpr mice. Lupus. 11: 411–418
  • Hahn, B. H., L. Knotts, M. Ng, and T. R. Hamilton. 1975. Influence of cyclophosphamide and other immunosuppressive drugs on immune disorders and neoplasia in NZB/NZW mice. Arthritis Rheum. 18: 145–152
  • Kiberd, B. A., and I. D. Young. 1994. Modulation of glomerular structure and function in murine lupus nephritis by methylprednisolone and cyclophosphamide. J. Lab. Clin. Med. 124: 496–506
  • Moreth, K., R. Brodbeck, A. Babelova, et al. 2010. The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J. Clin. Invest. 120: 4251–4272
  • Janssen, U., S. G. Riley, A. Vassiliadou, et al. 2003. Hypertension superimposed on type II diabetes in Goto Kakizaki rats induces progressive nephropathy. Kidney Int. 63: 2162–2170
  • Xia, Y., L. C. Herlitz, S. Gindea, et al. 2015. Deficiency of fibroblast growth factor-inducible 14 (Fn14) preserves the filtration barrier and ameliorates lupus nephritis. J. Am. Soc. Nephrol. 26: 1053–1070
  • Yung, S., K. F. Cheung, Q. Zhang, and T. M. Chan. 2010. Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis. J. Am. Soc. Nephrol. 21: 1912–1927
  • Herber, D., T. P. Brown, S. Liang, et al. 2007. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J. Immunol. 178: 3822–3830
  • Chan, T. M., J. K. Leung, S. K. Ho, and S. Yung. 2002. Mesangial cell-binding anti-DNA antibodies in patients with systemic lupus erythematosus. J. Am. Soc. Nephrol. 13: 1219–1229
  • Yung, S., R. C. Tsang, J. K. Leung, and T. M. Chan. 2006. Increased mesangial cell hyaluronan expression in lupus nephritis is mediated by anti-DNA antibody-induced IL-1beta. Kidney Int. 69: 272–280
  • Sollinger, H. W., M. H. Deierhoi, F. O. Belzer, et al. 1992. RS-61443 – a phase I clinical trial and pilot rescue study. Transplantation 53: 428–432
  • Haubitz, M., F. Bohnenstengel, R. Brunkhorst, et al. 2002. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney Int. 61: 1495–1501
  • Border, W. A., and N. A. Noble. 1997. TGF-beta in kidney fibrosis: a target for gene therapy. Kidney Int. 51: 1388–1396
  • Chan, T. M. 2012. Recent progress in the treatment of proliferative lupus nephritis. Am. J. Med. 125: 642–648
  • Isenberg, D., G. B. Appel, G. Contreras, et al. 2010. Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatology 49: 128–140
  • Daikh, D. I., and D. Wofsy. 2001. Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J. Immunol. 166: 2913–2916
  • Schiffer, L., J. Sinha, X. Wang, et al. 2003. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J. Immunol. 171: 489–497
  • Van Bruggen, M. C., B. Walgreen, T. P. Rijke, and J. H. Berden. 1998. Attenuation of murine lupus nephritis by mycophenolate mofetil. J. Am. Soc. Nephrol. 9: 1407–1415
  • Corna, D., M. Morigi, D. Facchinetti, et al. 1997. Mycophenolate mofetil limits renal damage and prolongs life in murine lupus autoimmune disease. Kidney Int. 51: 1583–1589
  • Ginzler, E. M., M. A. Dooley, C. Aranow, et al. 2005. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N. Engl. J. Med. 353: 2219–2228
  • Gharaee-Kermani, M., R. Wiggins, F. Wolber, et al. 1996. Fibronectin is the major fibroblast chemoattractant in rabbit anti-glomerular basement membrane disease. Am. J. Pathol. 148: 961–967
  • Eddy, A. A. 1996. Molecular insights into renal interstitial fibrosis. J. Am. Soc. Nephrol. 7: 2495–2508
  • Nath, K. A. 1992. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am. J. Kidney Dis. 20: 1–17
  • Nath, K. A. 1998. The tubulointerstitium in progressive renal disease. Kidney Int. 54: 992–994
  • Bilyy, R. O., T. Shkandina, A. Tomin, et al. 2012. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles. J. Biol. Chem. 287: 496–503
  • Fraser, D. A., A. K. Laust, E. L. Nelson, and A. J. Tenner. 2009. C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. J. Immunol. 183: 6175–6185
  • Menke, J., W. A. Rabacal, K. T. Byrne, et al. 2009. Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. J. Am. Soc. Nephrol. 20: 2581–2592
  • Lee, S., S. Huen, H. Nishio, et al. 2011. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22: 317–326
  • Brown, L. F., D. Dubin, L. Lavigne, et al. 1993. Macrophages and fibroblasts express embryonic fibronectins during cutaneous wound healing. Am. J. Pathol. 142: 793–801
  • Barnes, J. L., E. S. Torres, R. J. Mitchell, and J. H. Peters. 1995. Expression of alternatively spliced fibronectin variants during remodeling in proliferative glomerulonephritis. Am. J. Pathol. 147: 1361–1371
  • Yung, S., R. C. Tsang, Y. Sun, et al. 2005. Effect of human anti-DNA antibodies on proximal renal tubular epithelial cell cytokine expression: implications on tubulointerstitial inflammation in lupus nephritis. J. Am. Soc. Nephrol. 16: 3281–3294
  • Nishimoto, N., and T. Kishimoto. 2006. Interleukin 6: from bench to bedside. Nat. Clin. Pract. Rheumatol. 2: 619–626
  • Nagafuchi, H., N. Suzuki, Y. Mizushima, and T. Sakane. 1993. Constitutive expression of IL-6 receptors and their role in the excessive B cell function in patients with systemic lupus erythematosus. J. Immunol. 151: 6525–6534
  • Takeno, M., H. Nagafuchi, S. Kaneko, et al. 1997. Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J. Immunol. 158: 3529–3538
  • Ryffel, B., B. D. Car, H. Gunn, et al. 1994. Interleukin-6 exacerbates glomerulonephritis in (NZB x NZW)F1 mice. Am. J. Pathol. 144: 927–937
  • Finck, B. K., B. Chan, and D. Wofsy. 1994. Interleukin 6 promotes murine lupus in NZB/NZW F1 mice. J. Clin. Invest. 94: 585–591
  • Knight, D. A., M. Ernst, G. P. Anderson, et al. 2003. The role of gp130/IL-6 cytokines in the development of pulmonary fibrosis: critical determinants of disease susceptibility and progression? Pharmacol. Ther. 99: 327–338
  • Ha, H., M. S. Kim, J. Park, et al. 2006. Mycophenolic acid inhibits mesangial cell activation through p38 MAPK inhibition. Life Sci. 79: 1561–1567
  • Park, J., H. Ha, J. Seo, et al. 2004. Mycophenolic acid inhibits platelet-derived growth factor-induced reactive oxygen species and mitogen-activated protein kinase activation in rat vascular smooth muscle cells. Am. J. Transplant. 4: 1982–1990
  • Djamali, A., A. Vidyasagar, G. Yagci, et al. 2010. Mycophenolic acid may delay allograft fibrosis by inhibiting transforming growth factor-beta1-induced activation of Nox-2 through the nuclear factor-kappaB pathway. Transplantation 90: 387–393

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.