143
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Tumor necrosis factor receptor-associated factor 1 (TRAF1) polymorphisms and susceptibility to autoimmune thyroid disease

, , , , , , , & show all
Pages 84-89 | Received 31 Mar 2015, Accepted 08 Nov 2015, Published online: 24 Dec 2015

References

  • Ban, Y., T. Tozaki, M. Taniyama, et al. 2005. Association of a CTLA-4 3′ untranslated region (CT60) single nucleotide polymorphism with autoimmune thyroid disease in the Japanese population. Autoimmunity 38: 151–153
  • Jacobson, E. M., Y. Tomer. 2007. The CD40, CTLA-4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: back to the future. J. Autoimmun. 28: 85–98
  • Liu, L., H. Q. Wu, Q. Wang, et al. 2012. Association between thyroid stimulating hormone receptor gene intron polymorphisms and autoimmune thyroid disease in a Chinese Han population. Endocr. J. 59: 717–23
  • Yan, N., Y. L. Yu, J. Yang, et al. 2012. Association of interleukin-17A and -17F gene single-nucleotide polymorphisms with autoimmune thyroid diseases. Autoimmunity 45: 533–539
  • Zhang, J., W. X. Xiao, Y. F. Zhu, et al. 2013. Polymorphisms of interleukin-21 and interleukin-21-receptor genes confer risk for autoimmune thyroid diseases. BMC Endocr. Disord. 13: 26
  • Yan, N., S. Meng, J. Zhou, et al. 2014. Association between STAT4 gene polymorphisms and autoimmune thyroid diseases in a Chinese population. Int. J. Mol. Sci. 15: 12280–12293
  • Chen, C. F., Y. Chen, K. Dai, et al. 1996. A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol. Cell Biol. 16: 4691–4699
  • Rothe, M., S. C. Wong, W. J. Henzel, and D. V. Goeddel. 1994. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78: 681–692
  • Schwenzer, R., K. Siemienski, S. Liptay, et al. 1999. The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-kappaB and c-Jun N-terminal kinase. J. Biol. Chem. 274: 19368–19374
  • Rothe, M., V. Sarma, V. M. Dixit, and D. V. Goeddel. 1995. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 269:1424–1427
  • Zapata, J. M., J. C. Reed. 2002. TRAF1: lord without a RING. Sci. STKE. 2002: e27
  • Carpentier, I., R. Beyaert. 1999. TRAF1 is a TNF inducible regulator of NF-kappaB activation. FEBS Lett. 460: 246–250
  • Dunn, I. F., T. Y. Sannikova, R. S. Geha, and E. N. Tsitsikov. 2000. Identification and characterization of two CD40-inducible enhancers in the mouse TRAF1 gene locus. Mol. Immunol. 37: 961–973
  • Xie, P., B. S. Hostager, M. E. Munroe, et al. 2006.Cooperation between TNF receptor-associated factors 1 and 2 in CD40 signaling. J. Immunol. 176: 5388–5400
  • Duckett, C. S., R. W. Gedrich, M. C. Gilfillan, and C.B. Thompson. 1997. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol. Cell Biol. 17: 1535–1542
  • Bryce, P. J., M. K. Oyoshi, S. Kawamoto, et al. 2006. TRAF1 regulates Th2 differentiation, allergic inflammation and nuclear localization of the Th2 transcription factor, NIP45. Int. Immunol. 18: 101–111
  • Sabbagh, L., C. C. Srokowski, G. Pulle, et al. 2006. A critical role for TNF receptor-associated factor 1 and Bim down-regulation in CD8 memory T cell survival. Proc. Natl. Acad. Sci. USA. 103: 18703–18708
  • Wang, C. Y., M. W. Mayo, R. G. Korneluk, et al. 1998. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683
  • Sabbagh, L., G. Pulle, Y. Liu, et al. 2008. ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J. Immunol. 180: 8093–8101
  • Speiser, D. E., S. Y. Lee, B. Wong, et al. 1997. A regulatory role for TRAF1 in antigen-induced apoptosis of T cells. J. Exp. Med. 185: 1777–1783
  • Zhu, J., D. Zhang, F. Wu, et al. 2011.Single nucleotide polymorphisms at the TRAF1/C5 locus are associated with rheumatoid arthritis in a Han Chinese population. BMC Med. Genet. 12: 53
  • Kempinska-Podhorodecka, A., Z. Shums, M. Wasilewicz, et al. 2012. TRAF1 gene polymorphism correlates with the titre of Gp210 antibody in patients with primary biliary cirrhosis. Clin. Dev. Immunol. 2012: 487521
  • Chu, X., C. M. Pan, S. X. Zhao, et al. 2011. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat. Genet. 43: 897–901
  • Torres-Carrillo, N., H. Ontiveros-Mercado, N. M. Torres-Carrillo, et al. 2013. The -319C/+49G/CT60G haplotype of CTLA-4 gene confers susceptibility to rheumatoid arthritis in Mexican population. Cell Biochem. Biophys. 67: 1217–1228
  • Fodil, M., A. Benzaoui, F. Zemani-Fodil, et al. 2015. Association of PTPN22 (rs2476601) and STAT4 (rs7574865) polymorphisms with Rheumatoid Arthritis in the Western Algerian population. Acta Reumatol. Port. 40: 56–62
  • Nordang, G. B., M. K. Viken, J. E. Hollis-Moffatt, et al. 2009. Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology (Oxford). 48: 367–370
  • Lan, Y., B. Luo, J. L. Wang, et al. 2014. The association of interleukin-21 polymorphisms with interleukin-21 serum levels and risk of systemic lupus erythematosus. Gene 538: 94–98
  • Ciccacci, C., C. Perricone, F. Ceccarelli, et al. 2014. A multilocus genetic study in a cohort of Italian SLE patients confirms the association with STAT4 gene and describes a new association with HCP5 gene. PLoS One 9: e111991
  • Kurreeman, F. A., L. Padyukov, R. B. Marques, et al. 2007. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med. 4: e278
  • Dimopoulou, D. G., M. I. Zervou, M. Trachana, et al. 2013. Investigation of juvenile idiopathic arthritis susceptibility loci: results from a Greek population. Hum. Immunol. 74: 1194–1198
  • Xu, K., H. Peng, M. Zhou, et al. 2013. Association study of TRAF1/C5 polymorphism (rs10818488) with susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Gene 517: 46–54
  • Zhang, X., W. Li, X. Zhang, et al. 2014. Association between polymorphism in TRAF1/C5 gene and risk of rheumatoid arthritis: a meta-analysis. Mol. Biol. Rep. 41: 317–324
  • Lee, Y. H., G. G. Song. 2012. Associations between TNFSF4 and TRAF1-C5 gene polymorphisms and systemic lupus erythematosus: a meta-analysis. Hum. Immunol. 73: 1050–1054
  • Panoulas, V. F., J. P. Smith, P. Nightingale, and G.D. Kitas. 2009. Association of the TRAF1/C5 locus with increased mortality, particularly from malignancy or sepsis, in patients with rheumatoid arthritis. Arthritis Rheum. 60: 39–46
  • Plenge, R. M., M. Seielstad, L. Padyukov,et al. 2007. TRAF1-C5 as a risk locus for rheumatoid arthritis – a genomewide study. N. Engl. J. Med. 357: 1199–1209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.