220
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Association of the polymorphisms of chemokine genes (IL8, RANTES, MIG, IP10, MCP1 and IL16) with the pathogenesis of autoimmune thyroid diseases

, , , , , , , & show all
Pages 312-319 | Received 15 Jun 2015, Accepted 16 Dec 2015, Published online: 31 May 2016

References

  • Tezuka, H., K. Eguchi, T. Fukuda, T. Otsubo., et al. 1988. Natural killer and natural killer-like cell activity of peripheral blood and intrathyroidal mononuclear cells from patients with Graves' disease. J. Clin. Endocrinol. Metab. 66: 702–707
  • Totterman, T. H., L. C. Andersson, and P. Hayry. 1979. Evidence for thyroid antigen-reactive T lymphocytes infiltrating the thyroid gland in Graves' disease. Clin. Endocrinol. (Oxf). 11: 59–68
  • Ito, C., M. Watanabe, N. Okuda, C. Watanabe., et al. 2006. Association between the severity of Hashimoto's disease and the functional +874A/T polymorphism in the interferon-gamma gene. Endocr. J. 53: 473–478
  • Nanba, T., M. Watanabe, T. Akamizu, and Y. Iwatani. 2008. The −590CC genotype in the IL4 gene as a strong predictive factor for the development of hypothyroidism in Hashimoto disease. Clin. Chem. 54: 621–623
  • Nanba, T., M. Watanabe, N. Inoue, and Y. Iwatani. 2009. Increases of the Th1/Th2 cell ratio in severe Hashimoto's disease and in the proportion of Th17 cells in intractable Graves' disease. Thyroid. 19: 495–501
  • Yamada, H., M. Watanabe, T. Nanba, T. Akamizu., et al. 2008. The +869T/C polymorphism in the transforming growth factor-beta1 gene is associated with the severity and intractability of autoimmune thyroid disease. Clin. Exp. Immunol. 151: 379–382
  • Hayashi, F., M. Watanabe, T. Nanba, N. Inoue., et al. 2009. Association of the −31C/T functional polymorphism in the interleukin-1beta gene with the intractability of Graves' disease and the proportion of T helper type 17 cells. Clin. Exp. Immunol. 158: 281–286
  • Manel, N., D. Unutmaz, and D. R. Littman. 2008. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat. Immunol. 9: 641–649
  • Acosta-Rodriguez, E. V., G. Napolitani, A. Lanzavecchia, and F. Sallusto. 2007. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8: 942–949
  • Moser, B., M. Wolf, A. Walz, and P. Loetscher. 2004. Chemokines: multiple levels of leukocyte migration control. Trends. Immunol. 25: 75–84
  • Antonelli, A., M. Rotondi, P. Fallahi, P. Romagnani., et al. 2004. High levels of circulating CXC chemokine ligand 10 are associated with chronic autoimmune thyroiditis and hypothyroidism. J. Clin. Endocrinol. Metab. 89: 5496–5499
  • Antonelli, A., S. M. Ferrari, S. Frascerra, A. Di Domenicantonio., et al. 2005. Increase of circulating CXCL9 and CXCL11 associated with euthyroid or subclinically hypothyroid autoimmune thyroiditis. J. Clin. Endocrinol. Metab. 96: 1859–1863
  • Liu, C., C. Papewalis, J. Domberg, W. A. Scherbaum., et al. 2008. Chemokines and autoimmune thyroid diseases. Horm. Metab. Res. 40: 361–368
  • Gu, L. Q., H. Y. Jia, Y. J. Zhao, N. Liu., et al. 2009. Association studies of interleukin-8 gene in Graves' disease and Graves' ophthalmopathy. Endocrine. 36: 452–456
  • Pritchard, J., N. Horst, W. Cruikshank, and T. J. Smith. 2002. Igs from patients with Graves' disease induce the expression of T cell chemoattractants in their fibroblasts. J. Immunol. 168: 942–950
  • Garcia-Lopez, M. A., D. Sancho, F. Sanchez-Madrid, and M. Marazuela. 2001. Thyrocytes from autoimmune thyroid disorders produce the chemokines IP-10 and Mig and attract CXCR3+ lymphocytes. J. Clin. Endocrinol. Metab. 86: 5008–5016
  • Romagnani, P., M. Rotondi, E. Lazzeri, L. Lasagni., et al. 2002. Expression of IP-10/CXCL10 and MIG/CXCL9 in the thyroid and increased levels of IP-10/CXCL10 in the serum of patients with recent-onset Graves' disease. Am. J. Pathol. 161: 195–206
  • Ajjan, R. A., P. F. Watson, R. S. McIntosh, and A. P. Weetman. 1996. Intrathyroidal cytokine gene expression in Hashimoto's thyroiditis. Clin. Exp. Immunol. 105: 523–528
  • Simchen, C., I. Lehmann, D. Sittig, M. Steinert., et al. 2000. Expression and regulation of regulated on activation, normal T cells expressed and secreted in thyroid tissue of patients with Graves' disease and thyroid autonomy and in thyroid-derived cell populations. J. Clin. Endocrinol. Metab. 85: 4758–4764
  • Pritchard, J., R. Han, N. Horst, W. W. Cruikshank., et al. 2003. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves' disease is mediated through the insulin-like growth factor I receptor pathway. J. Immunol. 170: 6348–6354
  • Antonelli, A., S. M. Ferrari, S. Frascerra, F. Galetta., et al. 2011. Circulating chemokine (CXC motif) ligand (CXCL)9 is increased in aggressive chronic autoimmune thyroiditis, in association with CXCL10. Cytokine 55: 288–293
  • Baggiolini, M., A. Walz, and S. L. Kunkel. 1989. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Invest. 84: 1045–1049
  • Baggiolini, M., B. Dewald, and B. Moser. 1994. Interleukin-8 and related chemotactic cytokines–CXC and CC chemokines. Adv. Immunol. 55: 97–179
  • Smedman, C., B. Gardlund, K. Nihlmark, P. Gille-Johnson., et al. 2009. ELISpot analysis of LPS-stimulated leukocytes: human granulocytes selectively secrete IL-8, MIP-1beta and TNF-alpha. J. Immunol. Methods 346: 1–8
  • Lee, W. P., D. I. Tai, K. H. Lan, A. F. Li., et al. 2005. The −251T allele of the interleukin-8 promoter is associated with increased risk of gastric carcinoma featuring diffuse-type histopathology in Chinese population. Clin. Cancer Res. 11: 6431–6441
  • Daugherty, B. L., S. J. Siciliano, J. A. DeMartino, L. Malkowitz., et al. 1996. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J. Exp. Med. 183: 2349–2354
  • Struyf, S., P. Menten, J. P. Lenaerts, W. Put., et al. 2001. Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur. J. Immunol. 31: 2170–2178
  • Slimani, H., N. Charnaux, E. Mbemba, L. Saffar., et al. 2003. Interaction of RANTES with syndecan-1 and syndecan-4 expressed by human primary macrophages. Biochim. Biophys. Acta. 1617: 80–88
  • Proudfoot, A. E., S. Fritchley, F. Borlat, J. P. Shaw., et al. 2001. The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J. Biol. Chem. 276: 10620–10626
  • Appay, V., A. Brown, S. Cribbes, E. Randle., et al. 1999. Aggregation of RANTES is responsible for its inflammatory properties. Characterization of nonaggregating, noninflammatory RANTES mutants. J. Biol. Chem. 274: 27505–27512
  • Loetscher, P., M. Seitz, I. Clark-Lewis, M. Baggiolini., et al. 1996. Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J. Immunol. 156: 322–327
  • Fischer, F. R., Y. Luo, M. Luo, L. Santambrogio., et al. 2001. RANTES-induced chemokine cascade in dendritic cells. J. Immunol. 167: 1637–1643
  • Nickel, R. G., V. Casolaro, U. Wahn, K. Beyer., et al. 2000. Atopic dermatitis is associated with a functional mutation in the promoter of the C-C chemokine RANTES. J. Immunol. 164: 1612–1616
  • Liu, H., D. Chao, E. E. Nakayama, H. Taguchi., et al. 1999. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl. Acad. Sci. U S A. 96: 4581–4585
  • Wang, C. R., H. R. Guo, and M. F. Liu. 2005. RANTES promoter polymorphism as a genetic risk factor for rheumatoid arthritis in the Chinese. Clin. Exp. Rheumatol. 23: 379–384
  • Yao, T. C., Y. C. Tsai, and J. L. Huang. 2009. Association of RANTES promoter polymorphism with juvenile rheumatoid arthritis. Arthritis Rheum. 60: 1173–1178
  • Lacher, M., R. Kappler, S. Berkholz, H. Baurecht., et al. 2007. Association of a CXCL9 polymorphism with pediatric Crohn's disease. Biochem. Biophys. Res. Commun. 363: 701–707
  • Zhang, J., E. Noguchi, O. Migita, Y. Yokouchi., et al. 2005. Association of a haplotype block spanning SDAD1 gene and CXC chemokine genes with allergic rhinitis. J. Allergy Clin. Immunol. 115: 548–554
  • Deng, G., G. Zhou, R. Zhang, Y. Zhai., et al. 2008. Regulatory polymorphisms in the promoter of CXCL10 gene and disease progression in male hepatitis B virus carriers. Gastroenterology 134: 716–726
  • Mehrabian, M., R. S. Sparkes, T. Mohandas, A. M. Fogelman., et al. 1991. Localization of monocyte chemotactic protein-1 gene (SCYA2) to human chromosome 17q11.2-q21.1. Genomics 9: 200–203
  • Craig, M. J., and R. D. Loberg. 2006. CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis. Rev. 25: 611–619
  • Rovin, B. H., L. Lu, and R. Saxena. 1999. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem. Biophys. Res. Commun. 259: 344–348
  • Karrer, S., A. K. Bosserhoff, P. Weiderer, O. Distler., et al. 2005. The −2518 promotor polymorphism in the MCP-1 gene is associated with systemic sclerosis. J. Invest. Dermatol. 124: 92–98
  • Hou, S., P. Yang, L. Du, Z. Jiang., et al. 2009. Monocyte chemoattractant protein-1 − 2518 A/G single nucleotide polymorphism in Chinese Han patients with ocular Behcet's disease. Hum. Immunol. 71: 79–82
  • Center, D. M., H. Kornfeld, and W. W. Cruikshank. 1996. Interleukin 16 and its function as a CD4 ligand. Immunol. Today. 17: 476–481
  • Mathy, N. L., W. Scheuer, M. Lanzendorfer, K. Honold., et al. 2000. Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology 100: 63–69
  • Burkart, K. M., S. J. Barton, J. W. Holloway, I. A. Yang., et al. 2006. Association of asthma with a functional promoter polymorphism in the IL16 gene. J. Allergy Clin. Immunol. 117: 86–91
  • Reich, K., G. Westphal, I. R. Konig, R. Mossner., et al. 2003. Association of allergic contact dermatitis with a promoter polymorphism in the IL16 gene. J. Allergy Clin. Immunol. 112: 1191–1194
  • Heinzmann, A., I. Ahlert, T. Kurz, R. Berner., et al. 2004. Association study suggests opposite effects of polymorphisms within IL8 on bronchial asthma and respiratory syncytial virus bronchiolitis. J. Allergy Clin. Immunol. 114: 671–676
  • Taub, D. D., M. Anver, J. J. Oppenheim, D. L. Longo., et al. 1996. T lymphocyte recruitment by interleukin-8 (IL-8). IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo. J. Clin. Invest. 97: 1931–1941
  • Pavkova Goldbergova, M., J. Lipkova, N. Pavek, J. Gatterova., et al. 2012. RANTES, MCP-1 chemokines and factors describing rheumatoid arthritis. Mol. Immunol. 52: 273–278
  • Ye, D. Q., S. G. Yang, X. P. Li, Y. S. Hu., et al. 2005. Polymorphisms in the promoter region of RANTES in Han Chinese and their relationship with systemic lupus erythematosus. Arch. Dermatol. Res. 297: 108–113
  • Sullivan, N. L., C. S. Eickhoff, X. Zhang, O. K. Giddings., et al. 2011. Importance of the CCR5-CCL5 axis for mucosal Trypanosoma cruzi protection and B cell activation. J. Immunol. 187: 1358–1368
  • Colombara, M., V. Antonini, A. P. Riviera, F. Mainiero., et al. 2005. Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J. Immunol. 175: 7021–7028
  • Coursey, T. G., N. B. Gandhi, E. A. Volpe, S. C. Pflugfelder., et al. 2013. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease. PLoS One. 8: e78508, 1–9
  • Koefoed, P., T. V. Hansen, D. P. Woldbye, T. Werge., et al. 2009. An intron 1 polymorphism in the cholecystokinin-A receptor gene associated with schizophrenia in males. Acta Psychiatr. Scand. 120: 281–287
  • Onouchi, Y., T. Gunji, J. C. Burns, C. Shimizu., et al. 2008. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat. Genet. 40: 35–42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.