721
Views
75
CrossRef citations to date
0
Altmetric
Review Article

Epigenetic alterations underlying autoimmune diseases

, , , , &
Pages 69-83 | Received 31 Aug 2015, Accepted 16 Dec 2015, Published online: 13 Jan 2016

References

  • Waddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563–565
  • Grolleau-Julius, A., D. Ray, and R. L. Yung. 2010. The role of epigenetics in aging and autoimmunity. Clinical Rev. Allergy Immunol. 39: 42–50
  • Brooks, W. H. 2010. X chromosome inactivation and autoimmunity. Clin. Rev. Allergy Immunol. 39: 20–29
  • Selmi, C., Q. Lu, and M. C. Humble. 2012. Heritability versus the role of the environment in autoimmunity. J. Autoimmun. 39: 249–252
  • Miller, F. W., K. M. Pollard, C. G. Parks, et al. 2012. Criteria for environmentally associated autoimmune diseases. J. Autoimmun. 39: 253–258
  • Ngalamika, O., Y. Zhang, H. Yin, et al. 2012. Epigenetics, autoimmunity and hematologic malignancies: a comprehensive review. J. Autoimmun. 39: 451–465
  • Hedrich, C. M. 2011. Genetic variation and epigenetic patterns in autoimmunity. J. Genet. Syndr. Gene Ther. 2: 0e2. DOI: 10.4172/2157-7412.10000e2
  • Iqbal, K., S. G. Jin, G. P. Pfeifer, and P. E. Szabo. 2011. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. USA 108: 3642–3647
  • Wossidlo, M., T. Nakamura, K. Lepikhov, et al. 2011. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2: 233–241
  • Meda, F., M. Folci, A. Baccarelli, and C. Selmi. 2011. The epigenetics of autoimmunity. Cell. Mol. Immunol. 8: 226–236
  • Greer, J. M., and P. A. McCombe. 2012. The role of epigenetic mechanisms and processes in autoimmune disorders. Biol.: Targets Therapy 6:307–327
  • Jaenisch, R., and A. Bird. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33: 245–254
  • Lister, R., M. Pelizzola, R. H. Dowen, et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315–322
  • Gardiner-Garden, M., and M. Frommer. 1987. CpG islands in vertebrate genomes. J. Mol. Biol. 196: 261–282
  • Gupta, S., S. Y. Kim, S. Artis D., et al 2010. Histone methylation regulates memory formation. J. Neurosci.: Offic. J. Soc. Neurosci. 30: 3589–3599
  • Zhang, Y., and D. Reinberg. 2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15: 2343–2360
  • Wood, A., and A. Shilatifard. 2004. Posttranslational modifications of histones by methylation. Adv. Protein Chem. 67: 201–222
  • Sawan, C., and Z. Herceg. 2010. Histone modifications and cancer. Adv. Genet. 70: 57–85
  • Feng, Q., H. Wang, H. H. Ng, et al. 2002. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol.: CB 12: 1052–1058
  • Ng, H. H., Q. Feng, H. Wang, et al. 2002. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16: 1518–1527
  • Branscombe, T. L., A. Frankel, J. H. Lee, et al. 2001. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276: 32971–32976
  • Weiss, V. H., A. E. McBride, M. A. Soriano, et al. 2000. The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat. Struct. Biol. 7: 1165–1171
  • Zhang, X., L. Zhou, and X. Cheng. 2000. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J. 19: 3509–3519
  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128: 693–705
  • Glozak, M. A., N. Sengupta, X. Zhang, and E. Seto. 2005. Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23
  • Shahbazian, M. D., and M. Grunstein. 2007. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76: 75–100
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349–352
  • Kuo, M. H., and C. D. Allis. 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays: News Rev. Mol. Cell. Dev. Biol. 20: 615–626
  • Gallinari, P., S. Di Marco, P. Jones, et al. 2007. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res. 17: 195–211
  • De Ruijter, A., A. Van Gennip, H. Caron, et al. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370: 737–749
  • Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12: 599–606
  • Turner, B. M. 2000. Histone acetylation and an epigenetic code. BioEssays: News Rev. Mol. Cell. Dev. Biol. 22: 836–845
  • Rodriguez, A., S. Griffiths-Jones, J. L. Ashurst, and A. Bradley. 2004. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14: 1902–1910
  • Lee, Y., M. Kim, J. Han, et al. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23: 4051–4060
  • Cai, X., C. H. Hagedorn, and B. R. Cullen. 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA (New York, N.Y.) 10: 1957–1966
  • Gregory, R. I., T. P. Chendrimada, and R. Shiekhattar. 2006. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. (Clifton, N.J.) 342: 33–47
  • Berezikov, E., W. J. Chung, J. Willis, E. et al. 2007. Mammalian mirtron genes. Mol. Cell. 28: 328–336
  • Murchison, E. P., and G. J. Hannon. 2004. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16: 223–229
  • Lund, E., and J. E. Dahlberg. 2006. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harbor Symp. Quant. Biol. 71: 59–66
  • Ji, X. 2008. The mechanism of RNase III action: how dicer dices. Curr. Top. Microbiol. Immunol. 320: 99–116
  • Rana, T. M. 2007. Illuminating the silence: understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol. 8: 23–36
  • Pratt, A. J., and I. J. MacRae. 2009. The RNA-induced silencing complex: a versatile gene-silencing machine. J. Biol. Chem. 284: 17897–17901
  • Jing, Q., S. Huang, S. Guth, et al. 2005. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120: 623–634
  • Kawasaki, H., and K. Taira. 2004. MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucl. Acids Symp. Series (Oxf.) (2004): 211–212
  • Eulalio, A., E. Huntzinger, T. Nishihara, et al. 2009. Deadenylation is a widespread effect of miRNA regulation. RNA (New York, N.Y.) 15: 21–32
  • Bazzini, A. A., M. T. Lee, and A. J. Giraldez. 2012. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science (New York, N.Y.) 336: 233–237
  • Djuranovic, S., A. Nahvi, and R. Green. 2012. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science (New York, N.Y.) 336: 237–240
  • Arnett, F. C., S. M. Edworthy, D. A. Bloch, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheumat. 31: 315–324
  • Klein, K., and S. Gay. 2013. Epigenetic modifications in rheumatoid arthritis, a review. Curr. Opin. Pharmacol. 13: 420–425
  • Karouzakis, E., R. E. Gay, B. A. Michel, et al. 2009. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumat. 60: 3613–3622
  • Neidhart, M., J. Rethage, S. Kuchen, et al. 2000. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheumat. 43: 2634–2647
  • Takami, N., K. Osawa, Y. Miura, et al. 2006. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheumat. 54: 779–787
  • Nile, C. J., R. C. Read, M. Akil, et al. 2008. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheumat. 58: 2686–2693
  • Liao, J., G. Liang, S. Xie, et al. 2012. CD40L demethylation in CD4+ T cells from women with rheumatoid arthritis. Clin. Immunol. 145: 13–18
  • Manabe, H., Y. Nasu, T. Komiyama, et al. 2008. Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts. Inflamm. Res. 57: 4–10
  • Nishida, K., T. Komiyama, S. i. Miyazawa, et al. 2004. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21WAF1/Cip1 expression. Arthritis Rheumat. 50: 3365–3376
  • Stanczyk, J., D. M. L. Pedrioli, F. Brentano, et al. 2008. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheumat. 58: 1001–1009
  • Nakasa, T., S. Miyaki, A. Okubo, et al. 2008. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheumat. 58: 1284–1292
  • Fulci, V., G. Scappucci, G. D. Sebastiani, et al. 2010. miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Human Immunol. 71: 206–211
  • Stanczyk, J., C. Ospelt, E. Karouzakis, et al. 2011. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheumat. 63: 373–381
  • Lu, Q. 2013. The critical importance of epigenetics in autoimmunity. J. Autoimmun. 41: 1–5
  • Lei, W., Y. Luo, W. Lei, et al. 2009. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand. J. Rheumatol. 38: 369–374
  • Lu, Q., A. Wu, L. Tesmer, et al. 2007. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179: 6352–6358
  • Zhou, Y., J. Yuan, Y. Pan, et al. 2009. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus. Clin. Immunol. 132: 362–370
  • Barreto, G., A. Schäfer, J. Marhold, et al. 2007. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445: 671–675
  • Li, Y., M. Zhao, H. Yin, et al. 2010. Overexpression of the growth arrest and DNA damage-induced 45α gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheumat. 62: 1438–1447
  • Li, Y., C. Huang, M. Zhao, et al. 2013. A possible role of HMGB1 in DNA demethylation in CD4. Clin. Dev. Immunol. 2013: Article number 206298. DOI: 10.1155/2013/206298
  • Luo, Y., M. Zhao, and Q. Lu. 2010. Demethylation of promoter regulatory elements contributes to CD70 overexpression in CD4+ T cells from patients with subacute cutaneous lupus erythematosus. Clin. Exp. Dermatol. 35: 425–430
  • Zhao, M., Y. Sun, F. Gao, et al. 2010. Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J. Autoimmun. 35: 58–69
  • Dean, G. S., J. Tyrrell-Price, E. Crawley, and D. A. Isenberg. 2000. Cytokines and systemic lupus erythematosus. Ann. Rheum. Dis. 59: 243–251
  • Zhao, M., J. Tang, F. Gao, et al. 2010. Hypomethylation of IL-10 and IL-13 promoters in CD4+ T cells of patients with SLE. J. Biomed. Biotechnol. 2010: 9310–9318
  • Zhao, M., S. Liu, S. Luo, et al. 2014. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J. Autoimmun. 54: 127–136
  • Hu, N., X. Qiu, Y. Luo, et al. 2008. Abnormal histone modification patterns in lupus CD4+ T cells. J. Rheumatol. 35: 804–810
  • Hu, N., H. Long, M. Zhao, et al. 2009. Aberrant expression pattern of histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice. Scand. J. Rheumatol. 38: 464–471
  • Long, H., W. Huang, H. Yin, et al. 2009. Abnormal expression pattern of histone demethylases in CD4+ T cells of MRL/lpr lupus-like mice. Lupus 18: 1327–1328
  • Zhao, M., X. Wu, Q. Zhang, et al. 2010. RFX1 regulates CD70 and CD11a expression in lupus T cells by recruiting the histone methyltransferase SUV39H1. Arthritis Res. Therapy 12: R227
  • Zhou, Y., X. Qiu, Y. Luo, et al. 2011. Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cells. Lupus 20: 1365–1371
  • Zhang, Q., J. Liao, M. Zhao, et al. 2011. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J. Autoimmun. 37: 180–189
  • Liu, Y., J. Liao, M. Zhao, et al. 2015. Increased expression of TLR2 in CD4+ T cells from SLE patients enhances immune reactivity and promotes IL-17 expression through histone modifications. Eur. J. Immunol. 45: 2683–2693
  • Hedrich, C. M., and G. C. Tsokos. 2011. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol. Med. 17: 714–724
  • Pan, Y., and A. H. Sawalha. 2009. Epigenetic regulation and the pathogenesis of systemic lupus erythematosus. Transl. Res.: J. Lab. Clin. Med. 153: 4–10
  • Zhao, S., Y. Wang, Y. Liang, et al. 2011. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheumat. 63: 1376–1386
  • Ding, S., Y. Liang, M. Zhao, et al. 2012. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheumat. 64: 2953–2963
  • Luo, S., Y. Liu, G. Liang, et al. 2015. The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin. Epigenet. 7: 24. DOI: 10.1186/s13148-015-0063-7
  • Varga, J., and D. Abraham. 2007. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117: 557–567
  • Lian, X., R. Xiao, X. Hu, et al. 2012. DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheumat. 64: 2338–2345
  • Jiang, H., R. Xiao, X. Lian, et al. 2012. Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin. Immunol. 143: 39–44
  • Wang, Y., Y. Shu, Y. Xiao, et al. 2014. Hypomethylation and overexpression of ITGAL (CD11a) in CD4 T cells in systemic sclerosis. Clin. Epigenet. 6: 25. DOI: 10.1186/1868-7083-6-25
  • Czuwara-Ladykowska, J., F. Shirasaki, P. Jackers, et al. 2001. Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J. Biol. Chem. 276: 20839–20848
  • Wang, Y., P. S. Fan, and B. Kahaleh. 2006. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheumat. 54: 2271–2279
  • Luo, Y., Y. Wang, Q. Wang, et al. 2013. Systemic sclerosis: genetics and epigenetics. J. Autoimmun. 41: 161–167
  • Wang, Y., Y. Yang, Y. Luo, et al. 2013. Aberrant histone modification in peripheral blood B cells from patients with systemic sclerosis. Clin. Immunol. 149: 46–54
  • Krämer, M., C. Dees, J. Huang, et al. 2013. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann. Rheumat. Dis. 72: 614–620
  • Wang, Q., Y. Xiao, Y. Shi, et al. 2015. Overexpression of JMJD3 may contribute to demethylation of H3K27me3 in CD4+ T cells from patients with systemic sclerosis. Clin. Immunol. (Orlando, FL) 161: 396–399
  • Broen, J. C., T. R. Radstake, and M. Rossato. 2014. The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat. Rev. Rheumatol. 10: 671–681
  • Makino, K., M. Jinnin, I. Kajihara, et al. 2012. Circulating miR-142-3p levels in patients with systemic sclerosis. Clin. Exp. Dermatol. 37: 34–39
  • Dougados, M., S. V. D. Linden, R. Juhlin, et al. 1991. The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheumat. 34: 1218–1227
  • Khan, M., and S. Van der Linden. 1990. Ankylosing spondylitis and other spondyloarthropathies. Rheumat. Dis. Clin. N. Am. 16: 551–579
  • McHugh, K., and P. Bowness. 2012. The link between HLA-B27 and SpA – new ideas on an old problem. Rheumatology 51: 1529–1539
  • Colbert, R. A., M. L. DeLay, E. I. Klenk, and G. Layh-Schmitt. 2010. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol. Rev. 233: 181–202
  • Braun, J., and J. Sieper. 2007. Ankylosing spondylitis. Lancet 369: 1379–1390
  • Lai, N.-S., J.-L. Chou, G. C. Chen, et al. 2014. Association between cytokines and methylation of SOCS-1 in serum of patients with ankylosing spondylitis. Mol. Biol. Rep. 41: 3773–3780
  • Lai, N. S., H. C. Yu, H. C. Chen, et al. 2013. Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clin. Exp. Immunol. 173: 47–57
  • Daoussis, D., and A. P. Andonopoulos. 2011. The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? In Seminars in Arthritis and Rheumatism. Elsevier, New York. p. 170–177
  • Huang, J., G. Song, Z. Yin, et al. 2014. Elevated miR-29a expression is not correlated with disease activity index in PBMCs of patients with ankylosing spondylitis. Mod. Rheumatol. 24: 331–334
  • Sugatani, T., J. Vacher, and K. A. Hruska. 2011. A microRNA expression signature of osteoclastogenesis. Blood 117: 3648–3657
  • Huang, C.-H., J. C.-C. Wei, W.-C. Chang, et al. 2014. Higher expression of whole blood microRNA-21 in patients with ankylosing spondylitis associated with programmed cell death 4 mRNA expression and collagen cross-linked C-telopeptide concentration. J. Rheumatol. 41: 1104–1111
  • Fox, R. I. 2005. Sjögren's syndrome. Lancet 366: 321–331
  • González, S., S. Aguilera, C. Alliende, et al. 2011. Alterations in type I hemidesmosome components suggestive of epigenetic control in the salivary glands of patients with Sjögren's syndrome. Arthritis Rheumat. 63: 1106–1115
  • Yin, H., M. Zhao, X. Wu, et al. 2010. Hypomethylation and overexpression of CD70 (TNFSF7) in CD4+ T cells of patients with primary Sjögren's syndrome. J. Dermatol. Sci. 59: 198–203
  • Pérez, P., J.-M. Anaya, S. Aguilera, et al. 2009. Gene expression and chromosomal location for susceptibility to Sjögren's syndrome. J. Autoimmun. 33: 99–108
  • Alevizos, I., and G. G. Illei. 2010. MicroRNAs in Sjögren's syndrome as a prototypic autoimmune disease. Autoimmun. Rev. 9: 618–621
  • Bulosan, M., K. M. Pauley, K. Yo, et al. 2009. Inflammatory caspases are critical for enhanced cell death in the target tissue of Sjögren's syndrome before disease onset. Immunol. Cell Biol. 87: 81–90
  • Loftus E. V. Jr 2004. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126: 1504–1517
  • Gloria, L., M. Cravo, A. Pinto, et al. 1996. DNA hypomethylation and proliferative activity are increased in the rectal mucosa of patients with long-standing ulcerative colitis. Cancer 78: 2300–2306
  • Hsieh, C.-J., B. Klump, K. Holzmann, et al. 1998. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res. 58: 3942–3945
  • Tahara, T., T. Shibata, M. Nakamura, et al. 2009. Effect of MDR1 gene promoter methylation in patients with ulcerative colitis. Int. J. Mol. Med. 23: 521–527
  • Lin, Z., J. Hegarty, J. Cappel, et al. 2011. Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease. Clin. Genet. 80: 59–67
  • Cooke, J., H. Zhang, L. Greger, et al. 2012. Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm. Bowel Dis. 18: 2128–2137
  • Saito, S., J. Kato, S. Hiraoka, et al. 2011. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm. Bowel Dis. 17: 1955–1965
  • Bae, J.-H., J. Park, K. M. Yang, et al. 2014. Detection of DNA hypermethylation in sera of patients with Crohn's disease. Mol. Med. Rep. 9: 725–729
  • Takahashi, K., Y. Sugi, A. Hosono, and S. Kaminogawa. 2009. Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis. J. Immunol. 183: 6522–6529
  • Vamadevan, A. S., M. Fukata, E. T. Arnold, et al. 2010. Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis. Innate Immun. 16: 93–103
  • Kellermayer, R., S. E. Dowd, R. A. Harris, et al. 2011. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J. 25: 1449–1460
  • Takahashi, K., Y. Sugi, K. Nakano, et al. 2011. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J. Biol. Chem. 286: 35755–35762
  • Yin, L., and W. O. Chung. 2011. Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 4: 409–419
  • Olszak, T., D. An, S. Zeissig, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489–493
  • Wu, F., M. Zikusoka, A. Trindade, et al. 2008. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2α. Gastroenterology 135: 1624–1635. e1624
  • Wu, F., S. Zhang, T. Dassopoulos, et al. 2010. Identification of microRNAs associated with ileal and colonic Crohn's disease. Inflamm. Bowel Dis. 16: 1729–1738
  • Gaspari, A. A. 2006. Innate and adaptive immunity and the pathophysiology of psoriasis. J. Am. Acad. Dermatol. 54: S67–S80
  • Lowes, M. A., A. M. Bowcock, and J. G. Krueger. 2007. Pathogenesis and therapy of psoriasis. Nature 445: 866–873
  • Zhang, P., Y. Su, H. Chen, et al. 2010. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J. Dermatol. Sci. 60: 40–42
  • Zhang, K., R. Zhang, X. Li, et al. 2009. Promoter methylation status of p15 and p21 genes in HPP-CFCs of bone marrow of patients with psoriasis. Eur. J. Dermatol. 19: 141–146
  • Chen, M., Z. Q. Chen, P. G. Cui, et al. 2008. The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. Br. J. Dermatol. 158: 987–993
  • Ruchusatsawat, K., J. Wongpiyabovorn, S. Shuangshoti, et al. 2006. SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J. Mol. Med. 84: 175–182
  • Zhang, P., Y. Su, M. Zhao, et al. 2011. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris. Eur. J. Dermatol. 21: 552–557
  • Blander, G., A. Bhimavarapu, T. Mammone, et al. 2009. SIRT1 promotes differentiation of normal human keratinocytes. J. Invest. Dermatol. 129: 41–49
  • Tovar-Castillo, L. E., J. C. Cancino-Díaz, F. García-Vázquez, et al. 2007. Under-expression of VHL and over-expression of HDAC-1, HIF-1α, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis. Int. J. Dermatol. 46: 239–246
  • Sonkoly, E., T. Wei, P. C. Janson, et al. 2007. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2: e610
  • Kubo, M., T. Hanada, and A. Yoshimura. 2003. Suppressors of cytokine signaling and immunity. Nat. Immunol. 4: 1169–1176
  • Xu, N., F. Meisgen, L. M. Butler, et al. 2013. MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. J. Immunol. 190: 678–688
  • Boldin, M., and K. Chang. 2006. NF-kappaB· dependent induction of microRNA miR 146. An inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103: 12481–12486
  • Tili, E., J.-J. Michaille, A. Cimino, et al. 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179: 5082–5089
  • Zibert, J. R., M. B. Løvendorf, T. Litman, et al. 2010. MicroRNAs and potential target interactions in psoriasis. J. Dermatol. Sci. 58: 177–185
  • Zhao, M., L.-t. Wang, G.-p. Liang, et al. 2014. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4+ T cells of psoriasis vulgaris. Clin. Immunol. 150: 22–30
  • Eizirik, D. L., M. L. Colli, and F. Ortis. 2009. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5: 219–226
  • Barrett, J. C., D. G. Clayton, P. Concannon, et al. 2009. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41: 703–707
  • Cooper, J. D., D. J. Smyth, A. M. Smiles, et al. 2008. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat. Genet. 40: 1399–1401
  • Knip, M., R. Veijola, S. M. Virtanen, et al. 2005. Environmental triggers and determinants of type 1 diabetes. Diabetes 54: S125–S136
  • Lefebvre, D. E., K. L. Powell, A. Strom, and F. W. Scott. 2006. Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu. Rev. Nutr. 26: 175–202
  • Kauri, L. M., G.-S. Wang, C. Patrick, et al. 2007. Increased islet neogenesis without increased islet mass precedes autoimmune attack in diabetes-prone rats. Lab. Invest. 87: 1240–1251
  • Wang, Z., C. Zang, J. A. Rosenfeld, et al. 2008. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40: 897–903
  • Akirav, E. M., J. Lebastchi, E. M. Galvan, et al. 2011. Detection of β cell death in diabetes using differentially methylated circulating DNA. Proc. Natl. Acad. Sci. 108: 19018–19023
  • Pfleger, C., G. Meierhoff, H. Kolb, et al. 2010. Association of T-cell reactivity with β-cell function in recent onset type 1 diabetes patients. J. Autoimmun. 34: 127–135
  • Miao, F., D. D. Smith, L. Zhang, et al. 2008. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation an epigenetic study in diabetes. Diabetes 57: 3189–3198
  • Sebastiani, G., F. A. Grieco, I. Spagnuolo, et al. 2011. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes/Metabol. Res. Rev. 27: 862–866
  • Hezova, R., O. Slaby, P. Faltejskova, et al. 2010. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell. Immunol. 260: 70–74
  • Salas-Pérez, F., E. Codner, E. Valencia, et al. 2013. MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218: 733–737
  • Hirschfield, G. M., and M. E. Gershwin. 2013. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu. Rev. Pathol.: Mech. Dis. 8: 303–330
  • Poupon, R. 2010. Primary biliary cirrhosis: a 2010 update. J. Hepatol. 52: 745–758
  • Selmi, C., F. Cavaciocchi, A. Lleo, et al. 2014. Corrigendum: Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front. Immunol. 5: 371. DOI: 10.3389/fimmu.2014.0037
  • Mitchell, M. M., A. Lleo, L. Zammataro, et al. 2011. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 6: 95–102
  • Carrel, L., and H. F. Willard. 2005. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434: 400–404
  • Lleo, A., J. Liao, P. Invernizzi, et al. 2012. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology 55: 153–160
  • Mayo, M. J., J. M. Mosby, R. Jeyarajah, et al. 2006. The relationship between hepatic immunoglobulin production and CD154 expression in chronic liver diseases. Liver Int. 26: 187–196
  • Lefkowitz, R. J., and S. K. Shenoy. 2005. Transduction of receptor signals by β-arrestins. Science 308: 512–517
  • Shi, Y., Y. Feng, J. Kang, et al. 2007. Critical regulation of CD4+ T cell survival and autoimmunity by β-arrestin 1. Nat. Immunol. 8: 817–824
  • Hu, Z., Y. Huang, Y. Liu, et al. 2011. β-Arrestin 1 modulates functions of autoimmune T cells from primary biliary cirrhosis patients. J. Clin. Immunol. 31: 346–355
  • van Steensel, B. 2005. Mapping of genetic and epigenetic regulatory networks using microarrays. Nat. Genet. 37: S18–S24
  • Cedar, H., and Y. Bergman. 2009. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10: 295–304
  • Laird, P. W. 2010. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 11: 191–203
  • Jirtle, R. L., and M. K. Skinner. 2007. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8: 253–262
  • Esteller, M. 2007. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8: 286–298
  • Brooks, W. H., C. Le Dantec, J.-O. Pers, et al. 2010. Epigenetics and autoimmunity. J. Autoimmun. 34: J207–J219
  • Cang, S., Q. Lu, Y. Ma, and D. Liu. 2010. Clinical advances in hypomethylating agents targeting epigenetic pathways. Curr. Cancer Drug Targets 10: 539–545
  • Tan, J., S. Cang, Y. Ma, et al. 2010. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J. Hematol. Oncol. 3: 1–13
  • Quintero-Ronderos, P., and G. Montoya-Ortiz. 2012. Epigenetics and autoimmune diseases. Autoimm. Dis. 2012: Article number 593720. DOI: 10.1155/2012/593720
  • Qu, B., and N. Shen. 2015. miRNAs in the pathogenesis of systemic lupus erythematosus. Int. J. Mol. Sci. 16: 9557–9572
  • Zhu, H., Y. Li, S. Qu, et al. 2012. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J. Clin. Immunol. 32: 514–522
  • Altorok, N., P. Coit, T. Hughes, et al. 2014. Genome-wide DNA methylation patterns in naive CD4+ T cells from patients with primary Sjögren's syndrome. Arthritis Rheumatol. 66: 731–739
  • Harris, R. A., D. Nagy-Szakal, N. Pedersen, et al. 2012. Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases. Inflamm. Bowel Dis. 18: 2334–2341
  • Lin, Z., J. P. Hegarty, W. Yu, et al. 2012. Identification of disease-associated DNA methylation in B cells from Crohn’s disease and ulcerative colitis patients. Digest. Dis. Sci. 57: 3145–3153
  • Nimmo, E. R., J. G. Prendergast, M. C. Aldhous, et al. 2012. Genome-wide methylation profiling in Crohn's disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm. Bowel Dis. 18: 889–899
  • Kim, S. W., E. S. Kim, C. M. Moon, et al. 2012. Abnormal genetic and epigenetic changes in signal transducer and activator of transcription 4 in the pathogenesis of inflammatory bowel diseases. Digest. Dis. Sci. 57: 2600–2607
  • Häsler, R., Z. Feng, L. Bäckdahl, et al. 2012. A functional methylome map of ulcerative colitis. Genome Res. 22: 2130–2137
  • Tsaprouni, L. G., K. Ito, J. J. Powell, et al. 2011. Differential patterns of histone acetylation in inflammatory bowel diseases. J. Inflamm. (Lond.) 8: 1–1
  • Wu, F., N. J. Guo, H. Tian, et al. 2011. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn's disease. Inflamm. Bowel Dis. 17: 241–250
  • Selmi, C., M. J. Mayo, N. Bach, et al. 2004. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 127: 485–492
  • Alberici, F., D. Martorana, and A. Vaglio. 2014. Genetic aspects of anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol. Dial. Transpl. 30: i37–45
  • Coit, P., M. Jeffries, N. Altorok, et al. 2013. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 43: 78–84
  • Lee, J. C., and K. G. Smith. 2014. Prognosis in autoimmune and infectious disease: new insights from genetics. Clin. Transl. Immunol. 3: e15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.