1,271
Views
67
CrossRef citations to date
0
Altmetric
Review Article

New insights into the role of T cells in pathogenesis of psoriasis and psoriatic arthritis

, , &
Pages 435-450 | Received 26 Apr 2015, Accepted 10 Mar 2016, Published online: 06 Apr 2016

References

  • Burgdorf, W. C. H., G. Plewig, H. H. Wolff, and M. Landthaler. 2010. Psoriasis. In: Braun-Falco's Dermatology. Springer, Heidelberg
  • Nevitt, G. J., and P. E. Hutchinson. 1996. Psoriasis in the community: prevalence, severity and patients' beliefs and attitudes towards the disease. Br. J. Dermatol. 135: 533–537
  • Danielsen, K., A. O. Olsen, T. Wilsgaard, and A. S. Furberg. 2013. Is the prevalence of psoriasis increasing? A 30 year follow-up of a population-based cohort. Br. J. Dermatol. 168: E1303–E1310
  • Christophers, E. 2001. Psoriasis – epidemiology and clinical spectrum. Clin. Exp. Dermatol. 26: 314–320
  • Neimann, A. L., S. B. Porter, and J. M. Gelfand. 2006. The epidemiology of psoriasis. Expert Rev. Dermatol. 1: 63–75
  • Elder, J. T., A. T. Bruce, J. E. Gudjonsson, et al. 2010. Molecular dissection of psoriasis: integrating genetics and biology. J. Invest. Dermatol. 130: 1213–1226
  • Nestle, F. O., D. H. Kaplan, and J. Barker. 2009. Mechanisms of disease: psoriasis. N. Engl. J. Med. 361: 496–509
  • Christensen, T. E., K. P. Callis, J. Papenfuss, et al. 2006. Observations of psoriasis in the absence of therapeutic intervention identifies two unappreciated morphologic variants, thin-plaque and thick-plaque psoriasis, and their associated phenotypes. J. Invest. Dermatol. 126: 2397–2403
  • Moll, J. M., and V. Wright. 1973. Psoriatic arthritis. Sem. Arthritis Rheum. 3: 55–78
  • Chandran, V. 2013. The genetics of psoriasis and psoriatic arthritis. Clin. Rev. Allergy Immunol. 44: 149–156
  • Helliwell, P., and W. Taylor. 2005. Classification and diagnostic criteria for psoriatic arthritis. Ann. Rheum. Dis. 64 (Suppl 2): ii3–ii8
  • Gladman, D. D., C. Antoni, P. Mease, D. O. Clegg, and P. Nash. 2005. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann. Rheum. Dis. 64: ii14–ii17
  • Veale, D. J. 2013. Psoriatic arthritis: recent progress in pathophysiology and drug development. Arthritis Res. Ther. 15: 224
  • Wright, V. 1959. Psoriatic arthritis. A comparative study of rheumatoid arthritis, psoriasis, and arthritis associated with psoriasis. Arch. Dermatol. 80: 27–35
  • Baker, H. 1966. Epidemiological aspects of psoriasis and arthritis. Br. J. Dermatol. 78: 249–261
  • Veale, D. J., C. Ritchlin, and O. Fitzgerald. 2005. Immunopathology of psoriasis and psoriatic arthritis. Ann. Rheum. Dis. 64: ii26–ii29
  • Hébert, H. L., F. R. Ali, J. Bowes, et al. 2012. Genetic susceptibility to psoriasis and psoriatic arthritis: implications for therapy. Br. J. Dermatol. 166: 474–482
  • Raychaudhuri, S. K., E. Maverakis, and S. P. Raychaudhuri. 2014. Diagnosis and classification of psoriasis. Autoimmun. Rev. 13: 490–495
  • Sigurdardottir, S. L., R. H. Thorleifsdottir, H. Valdimarsson, and A. Johnston. 2013. The role of the palatine tonsils in the pathogenesis and treatment of psoriasis. Br. J. Dermatol. 168: 237–242
  • Sigurdardottir, S. L., R. H. Thorleifsdottir, H. Valdimarsson, and A. Johnston. 2013. The association of sore throat and psoriasis might be explained by histologically distinctive tonsils and increased expression of skin-homing molecules by tonsil T cells. Clin. Exp. Immunol. 174: 139–151
  • Nickoloff, B. J., and T. Wrone-Smith. 1999. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am. J. Pathol. 155: 145–158
  • Telfer, N. R., R. J. Chalmers, K. Whale, and G. Colman. 1992. The role of streptococcal infection in the initiation of guttate psoriasis. Arch. Dermatol. 128: 39–42
  • Prinz, J. C. 2004. Disease mimicry – a pathogenetic concept for T cell-mediated autoimmune disorders triggered by molecular mimicry? Autoimmun. Rev. 3: 10–15
  • Prinz, J. C. 2001. Psoriasis vulgaris – a sterile antibacterial skin reaction mediated by cross-reactive T cells? An immunological view of the pathophysiology of psoriasis. Clin. Exp. Dermatol. 26: 326–332
  • Besgen, P., P. Trommler, S. Vollmer, and J. C. Prinz. 2010. Ezrin, maspin, peroxiredoxin 2, and heat shock protein 27: potential targets of a streptococcal-induced autoimmune response in psoriasis. J. Immunol. 184: 5392–5402
  • Cai, Y., C. Fleming, and J. Yan. 2012. New insights of T cells in the pathogenesis of psoriasis. Cell. Mol. Immunol. 9: 302–309
  • Lande, R., E. Botti, C. Jandus, et al. 2014. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat. Commun. 5: 5621
  • Zanetti, M. 2004. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75: 39–48
  • Lande, R., J. Gregorio, V. Facchinetti, et al. 2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449: 564–569
  • Naldi, L., L. Chatenoud, D. Linder, et al. 2005. Cigarette smoking, body mass index, and stressful life events as risk factors for psoriasis: results from an Italian case-control study. J. Invest. Dermatol. 125: 61–67
  • Gaston, L., J. C. Crombez, M. Lassonde, et al. 1991. Psychological stress and psoriasis: experimental and prospective correlational studies. Acta Derm. Venerol. Suppl 156: 37–43
  • Farber, E. M., B. J. Nickoloff, B. Recht, and J. E. Fraki. 1986. Stress, symmetry, and psoriasis: possible role of neuropeptides. J. Am. Acad. Dermatol. 14: 305–311
  • Saraceno, R., C. E. Kleyn, G. Terenghi, and C. E. Griffiths. 2006. The role of neuropeptides in psoriasis. Br. J. Dermatol. 155: 876–882
  • Girolomoni, G., and R. E. Tigelaar. 1990. Capsaicin-sensitive primary sensory neurons are potent modulators of murine delayed-type hypersensitivity reactions. J. Immunol. 145: 1105–1112
  • Raychaudhuri, S. P., W. Y. Jiang, and S. K. Raychaudhuri. 2008. Revisiting the Koebner phenomenon: role of NGF and its receptor system in the pathogenesis of psoriasis. Am. J. Pathol. 172: 961–971
  • Jiang, W. Y., S. P. Raychaudhuri, and E. M. Farber. 1998. Double-labeled immunofluorescence study of cutaneous nerves in psoriasis. Int. J. Dermatol. 37: 572–574
  • Harvima, I. T., H. Viinamäki, A. Naukkarinen, et al. 1993. Association of cutaneous mast cells and sensory nerves with psychic stress in psoriasis. Psychother. Psychosom. 60: 168–176
  • Raychaudhuri, S. P., M. Sanyal, H. Weltman, and S. Kundu-Raychaudhuri. 2004. K252a, a high-affinity nerve growth factor receptor blocker, improves psoriasis: an in vivo study using the severe combined immunodeficient mouse-human skin model. J. Invest. Dermatol. 122: 812–819
  • Raychaudhuri, S. P., S. K. Raychaudhuri, K. R. Atkuri, et al. 2011. Nerve growth factor: a key local regulator in the pathogenesis of inflammatory arthritis. Arthritis Rheum. 63: 3243–3252
  • Pincelli, C. 2000. Nerve growth factor and keratinocytes: a role in psoriasis. Eur. J. Dermatol. 10: 85–90
  • Ciocon, D. H., and A. B. Kimball. 2007. Psoriasis and psoriatic arthritis: separate or one and the same? Br. J. Dermatol. 157: 850–860
  • Fitzgerald, O., and M. Dougados. 2006. Psoriatic arthritis: one or more diseases? Best Pract. Res. Clin. Rheumatol. 20: 435–450
  • Robinson, D. J., M. Hackett, J. Wong, et al. 2006. Co-occurrence and comorbidities in patients with immune-mediated inflammatory disorders: an exploration using US healthcare claims data, 2001-2002. Curr. Med. Res. Opin. 22: 989–1000
  • Ghoreschi, K., C. Weigert, and M. Röcken. 2007. Immunopathogenesis and role of T cells in psoriasis. Clin. Dermatol. 25: 574–580
  • Chaudhari, U., P. Romano, L. D. Mulcahy, et al. 2001. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet. 357: 1842–1847
  • Leonardi, C. L., J. L. Powers, R. T. Matheson, et al. 2003. Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349: 2014–2022
  • Schlaak, J. F., M. Buslau, W. Jochum, et al. 1994. T cells involved in psoriasis vulgaris belong to the Th1 subset. J. Invest. Dermatol. 102: 145–149
  • Partsch, G., E. Wagner, B. F. Leeb, et al. 1998. T cell derived cytokines in psoriatic arthritis synovial fluids. Ann. Rheum. Dis. 57: 691–693
  • Lew, W., A. M. Bowcock, and J. G. Krueger. 2004. Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and “Type 1” inflammatory gene expression. Trends Immunol. 25: 295–305
  • Victor, F. C., A. B. Gottlieb, and A. Menter. 2003. Changing paradigms in dermatology: tumor necrosis factor alpha (TNF-alpha) blockade in psoriasis and psoriatic arthritis. Clin. Dermatol. 21: 392–397
  • Jiang, S. 2011. Th17 cells in Health and Disease. Springer Science + Business Media, LLC, New York
  • Martin, D. A., J. E. Towne, G. Kricorian, et al. 2013. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J. Invest. Dermatol. 133: 17–26
  • Weaver, C. T., R. D. Hatton, P. R. Mangan, and L. E. Harrington. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Ann. Rev. Immunol. 25: 821–852
  • Acosta-Rodriguez, E. V., G. Napolitani, A. Lanzavecchia, and F. Sallusto. 2007. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8: 942–949
  • Yang, L., D. E. Anderson, C. Baecher-Allan, et al. 2008. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature. 454: 350–352
  • Yao, Z., S. L. Painter, W. C. Fanslow, et al. 1995. Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155: 5483–5486
  • Awasthi, A., L. Riol-Blanco, A. Jäger, et al. 2009. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182: 5904–5908
  • Ciric, B., M. El-behi, R. Cabrera, et al. 2009. IL-23 drives pathogenic IL-17-producing CD8+ T cells. J. Immunol. 182: 5296–5305
  • Sutton, C. E., S. J. Lalor, C. M. Sweeney, et al. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 31: 331–341
  • Volpe, E., N. Servant, R. Zollinger, et al. 2008. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat. Immunol. 9: 650–657
  • McGeachy, M. J., Y. Chen, C. M. Tato, et al. 2009. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10: 314–324
  • Raphael, I., S. Nalawade, T. N. Eagar, and T. G. Forsthuber. 2014. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 74: 5–17
  • Benedetti, G., and P. Miossec. 2014. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur. J. Immunol. 44: 339–347
  • Lewis, B. J., S. Rajpara, A. M. Haggart, et al. 2013. Predominance of activated, clonally expanded T helper type 17 cells within the CD4+ T cell population in psoriatic lesions. Clin. Exp. Immunol. 173: 38–46
  • Cai, Y., X. Shen, C. Ding, et al. 2011. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity. 35: 596–610
  • Lowes, M. A., T. Kikuchi, J. Fuentes-Duculan, et al. 2008. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 128: 1207–1211
  • Zaba, L. C., M. Suárez-Fariñas, J. Fuentes-Duculan, et al. 2009. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J. Allergy Clin. Immunol. 124: 1022–1130
  • Singh, T. P., M. P. Schön, K. Wallbrecht, et al. 2010. 8-methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL-23/Th17 axis and induction of Foxp3+ regulatory T cells involving CTLA4 signaling in a psoriasis-like skin disorder. J. Immunol. 184: 7257–7267
  • Langley, R. G., B. E. Elewski, M. Lebwohl, et al. 2014. Secukinumab in plaque psoriasis – results of two phase 3 trials. N. Engl. J. Med. 371: 326–338
  • McInnes, I. B., J. Sieper, J. Braun, et al. 2014. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann. Rheum. Dis. 73: 349–356
  • O'Rielly, D. D., and P. Rahman. 2014. Genetics of psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 28: 673–685
  • Yao, Z., M. K. Spriggs, J. M. Derry, et al. 1997. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine. 9: 794–800
  • Honorati, M. C., R. Meliconi, L. Pulsatelli, et al. 2001. High in vivo expression of interleukin-17 receptor in synovial endothelial cells and chondrocytes from arthritis patients. Rheumatology (Oxford). 40: 522–527
  • Harper, E. G., C. Guo, H. Rizzo, et al. 2009. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J. Invest. Dermatol. 129: 2175–2183
  • Homey, B., M. C. Dieu-Nosjean, A. Wiesenborn, et al. 2000. Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J. Immunol. 164: 6621–6632
  • Nograles, K. E., L. C. Zaba, E. Guttman-Yassky, et al. 2008. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159: 1092–1102
  • Liang, S. C., X. Y. Tan, D. P. Luxenberg, et al. 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203: 2271–2279
  • Gutowska-Owsiak, D., A. L. Schaupp, M. Salimi, et al. 2012. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp. Dermatol. 21: 104–110
  • Dong, W., and P. Zhu. 2012. Functional niche of inflamed synovium for Th17-cell expansion and activation in rheumatoid arthritis: implication to clinical therapeutics. Autoimmun. Rev. 11: 844–851
  • Hüffmeier, U., S. Uebe, A. B. Ekici, et al. 2010. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 42: 996–999
  • Filer, C., P. Ho, R. L. Smith, et al. 2008. Investigation of association of the IL12B and IL23R genes with psoriatic arthritis. Arthritis Rheum. 58: 3705–3709
  • Bowes, J., G. Orozco, E. Flynn, et al. 2011. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann. Rheum. Dis. 70: 1641–1644
  • Eirís, N., L. González-Lara, J. Santos-Juanes, et al. 2014. Genetic variation at IL12B, IL23R and IL23A is associated with psoriasis severity, psoriatic arthritis and type 2 diabetes mellitus. J. Dermatol. Sci. 75: 167–172
  • Kirkham, B. W., A. Kavanaugh, and K. Reich. 2014. Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology. 141: 133–142
  • Raychaudhuri, S. P., S. K. Raychaudhuri, and M. C. Genovese. 2012. IL-17 receptor and its functional significance in psoriatic arthritis. Mol. Cell. Biochem. 359: 419–429
  • Noordenbos, T., N. Yeremenko, I. Gofita, et al. 2012. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 64: 99–109
  • Page, G., S. Lebecque, and P. Miossec. 2002. Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium. J. Immunol. 168: 5333–5334
  • Egan, P. J., A. van Nieuwenhuijze, I. K. Campbell, and I. P. Wicks. 2008. Promotion of the local differentiation of murine Th17 cells by synovial macrophages during acute inflammatory arthritis. Arthritis Rheum. 58: 3720–3729
  • Rampersad, R. R., T. K. Tarrant, C. T. Vallanat, et al. 2011. Enhanced Th17-cell responses render CCR2-deficient mice more susceptible for autoimmune arthritis. PLoS One 6: e25833
  • Bartok, B., and G. S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233: 233–255
  • Ospelt, C., K. A. Reedquist, S. Gay, and P. P. Tak. 2011. Inflammatory memories: is epigenetics the missing link to persistent stromal cell activation in rheumatoid arthritis? Autoimmun. Rev. 10: 519–524
  • Jovanovic, D. V., J. A. Di Battista, J. Martel-Pelletier, et al. 1998. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J. Immunol. 160: 3513–3521
  • Hwang, S. Y., J. Y. Kim, K. W. Kim, et al. 2004. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res. Ther. 6: R120–R128
  • Katz, Y., O. Nadiv, and Y. Beer. 2001. Interleukin-17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts: a possible role as a “fine-tuning cytokine” in inflammation processes. Arthritis Rheum. 44: 2176–2184
  • Shahrara, S., S. R. Pickens, A. M. Mandelin, et al. 2010. IL-17-mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction. J. Immunol. 184: 4479–4487
  • Shahrara, S., S. R. Pickens, A. Dorfleutner, and R. M. Pope. 2009. IL-17 induces monocyte migration in rheumatoid arthritis. J. Immunol. 182: 3884–3891
  • Moran, E. M., M. Connolly, W. Gao, et al. 2011. Interleukin-17A induction of angiogenesis, cell migration, and cytoskeletal rearrangement. Arthritis Rheum. 63: 3263–3273
  • Van Bezooijen, R. L., L. Van Der Wee-Pals, S. E. Papapoulos, and C. W. Löwik. 2002. Interleukin 17 synergises with tumour necrosis factor alpha to induce cartilage destruction in vitro. Ann. Rheum. Dis. 61: 870–876
  • Koshy, P. J., N. Henderson, C. Logan, et al. 2002. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines. Ann. Rheum. Dis. 61: 704–713
  • Moran, E. M., R. Mullan, J. McCormick, et al. 2009. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res. Ther. 11: r113
  • Sato, K., A. Suematsu, K. Okamoto, et al. 2006. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203: 2673–2682
  • Pöllinger, B., T. Junt, B. Metzler, et al. 2011. Th17 cells, not IL-17 + γδ T cells, drive arthritic bone destruction in mice and humans. J. Immunol. 186: 2602–2612
  • Kotake, S., N. Udagawa, N. Takahashi, et al. 1999. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103: 1345–1352
  • Lubberts, E., L. van den Bersselaar, B. Oppers-Walgreen, et al. 2003. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J. Immunol. 170: 2655–2662
  • Braun, T., and J. Zwerina. 2011. Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Res. Ther. 13: 235
  • Takagi, R., T. Higashi, K. Hashimoto, et al. 2008. B cell chemoattractant CXCL13 is preferentially expressed by human Th17 cell clones. J. Immunol. 181: 186–189
  • Mitsdoerffer, M., Y. Lee, A. Jäger, et al. 2010. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl. Acad. Sci. USA. 107: 14292–14297
  • Nakken, B., L. A. Munthe, Y. T. Konttinen, et al. 2011. B-cells and their targeting in rheumatoid arthritis–current concepts and future perspectives. Autoimmun. Rev. 11: 28–34
  • Chiricozzi, A., E. Guttman-Yassky, M. Suárez-Fariñas, et al. 2011. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J. Invest. Dermatol. 131: 677–687
  • Hartupee, J., C. Liu, M. Novotny, et al. 2007. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 179: 4135–4141
  • Sun, D., M. Novotny, K. Bulek, et al. 2011. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat. Immunol. 12: 853–860
  • Suárez-Fariñas, M., K. Li, J. Fuentes-Duculan, et al. 2012. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J. Invest. Dermatol. 132: 2552–2564
  • Bettelli, E., Y. Carrier, W. Gao, et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441: 235–238
  • Raychaudhuri, S. P. 2013. Role of IL-17 in psoriasis and psoriatic arthritis. Clin. Rev. Allergy Immunol. 44: 183–193
  • Apostolidis, S. A., L. A. Lieberman, K. Kis-Toth, et al. 2011. The dysregulation of cytokine networks in systemic lupus erythematosus. J. Interferon Cytokine Res. 31: 769–779
  • Tu, E., D. K. Ang, S. A. Bellingham, et al. 2012. Both IFN-γ and IL-17 are required for the development of severe autoimmune gastritis. Eur. J. Immunol. 42: 2574–2583
  • Ambrosi, A., A. Espinosa, and M. Wahren-Herlenius. 2012. IL-17: a new actor in IFN-driven systemic autoimmune diseases. Eur. J. Immunol. 42: 2274–2284
  • Kryczek, I., A. T. Bruce, J. E. Gudjonsson, et al. 2008. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J. Immunol. 181: 4733–4741
  • Hirota, K., J. H. Duarte, M. Veldhoen, et al. 2011. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12: 255–263
  • Nistala, K., S. Adams, H. Cambrook, et al. 2010. Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc. Natl. Acad. Sci. USA. 107: 14751–14756
  • Res, P. C., G. Piskin, O. J. de Boer, et al. 2010. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS One. 5: e14108
  • Benham, H., P. Norris, J. Goodall, et al. 2013. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res. Ther. 15: R136
  • Johnston, A., and J. E. Gudjonson. 2014. 22 again: IL-22 as a risk gene and important mediator in psoriasis. J. Invest. Dermatol. 134: 1501–1503
  • Eyerich, S., K. Eyerich, D. Pennino, et al. 2009. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119: 3573–3585
  • Trifari, S., C. D. Kaplan, E. H. Tran, et al. 2009. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 10: 864–871
  • Duhen, T., R. Geiger, D. Jarrossay, et al. 2009. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10: 857–863
  • Yang, X., and S. G. Zheng. 2014. Interleukin-22: a likely target for treatment of autoimmune diseases. Autoimmun. Rev. 13: 615–620
  • Boniface, K., F. X. Bernard, M. Garcia, et al. 2005. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol. 174: 3695–3702
  • Kagami, S., H. L. Rizzo, J. J. Lee, et al. 2010. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J. Invest. Dermatol. 2010: 1373–1383
  • Caproni, M., E. Antiga, L. Melani, et al. 2009. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J. Clin. Immunol. 29: 210–214
  • Lo, Y. H., K. Torii, C. Saito, et al. 2010. Serum IL-22 correlates with psoriatic severity and serum IL-6 correlates with susceptibility to phototherapy. J. Dermatol. Sci. 58: 225–227
  • Meephansan, J., K. Ruchusatsawat, W. Sindhupak, et al. 2011. Effect of methotrexate on serum levels of IL-22 in patients with psoriasis. Eur. J. Dermatol. 21: 501–504
  • Fiocco, U., P. Sfriso, F. Oliviero, et al. 2010. Synovial effusion and synovial fluid biomarkers in psoriatic arthritis to assess intraarticular tumor necrosis factor-α blockade in the knee joint. Arthritis Res. Ther. 12: R148
  • Mitra, A., S. K. Raychaudhuri, and S. P. Raychaudhuri. 2012. Functional role of IL-22 in psoriatic arthritis. Arthritis Res. Ther. 14: R65
  • Zhang, L., Y. G. Li, Y. H. Li, et al. 2012. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One. 7: e31000
  • Raychaudhuri, S. K., A. Saxena, and S. P. Raychaudhuri. 2015. Role of IL-17 in the pathogenesis of psoriatic arthritis and axial spondyloarthritis. Clin. Rheumatol. 34: 1019–1023
  • Duffin, K. C., I. C. Freeny, S. J. Schrodi, et al. 2009. Association between IL13 polymorphisms and psoriatic arthritis is modified by smoking. J. Invest. Dermatol. 129: 2777–2783
  • Eder, L., V. Chandran, F. Pellett, et al. 2011. IL13 gene polymorphism is a marker for psoriatic arthritis among psoriasis patients. Ann. Rheum. Dis. 70: 1594–1598
  • Hart, P. H., M. Ahern, M. D. Smith, and J. J. Finlay-Jones. 1995. Regulatory effects of IL-13 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis. Clin. Exp. Immunol. 99: 331–337
  • Bessis, N., M. C. Boissier, P. Ferrara, et al. 1996. Attenuation of collagen-induced arthritis in mice by treatment with vector cells engineered to secrete interleukin-13. Eur. J. Immunol. 26: 2399–2403
  • Abrams, J. R., S. L. Kelley, E. Hayes, et al. 2000. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192: 681–694
  • Zaba, L. C., I. Cardinale, P. Gilleaudeau, et al. 2007. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204: 3183–3194
  • Suárez-Fariñas, M., J. Fuentes-Duculan, M. A. Lowes, and J. G. Krueger. 2011. Resolved psoriasis lesions retain expression of a subset of disease-related genes. J. Invest. Dermatol. 131: 391–400
  • Cheuk, S., M. Wikén, L. Blomqvist, et al. 2014. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 192: 3111–3120
  • Mackay, L. K., T. S., Angus, J. Z., Ma, et al. 2012. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. USA. 109: 7037–7042
  • Casey, K. A., K. A. Fraser, J. M. Schenkel, et al. 2012. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188: 4866–4875
  • Jiang, X., R. A. Clark, L. Liu, et al. 2012. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature. 483: 227–231
  • Gershon, R. K. 1975. A disquisition on suppressor T cells. Transplant. Rev. 26: 170–185
  • Sakaguchi, S., M. Miyara, C. M. Costantino, and D. A. Hafler. 2010. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10: 490–500
  • Cosmi, L., F. Liotta, E. Lazzeri, et al. 2003. Human CD8 + CD25+ thymocytes share phenotypic and functional features with CD4 + CD25+ regulatory thymocytes. Blood. 102: 4107–4114
  • Roncarolo, M. G., R. Bacchetta, C. Bordignon, et al. 2001. Type 1 T regulatory cells. Immunol. Rev. 182: 68–79
  • Weiner, H. L. 2001. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol. Rev. 182: 207–214
  • Kessel, A., T. Haj, R. Peri, et al. 2012. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun. Rev. 11: 670–677
  • Sakaguchi, S., T. Yamaguchi, T. Nomura, and M. Ono. 2008. Regulatory T cells and immune tolerance. Cell. 133: 775–787
  • Baecher-Allan, C., J. A. Brown, G. J. Freeman, and D. A. Hafler. 2001. CD4 + CD25high regulatory cells in human peripheral blood. J. Immunol. 167: 1245–1253
  • Fontenot, J. D., and A. Y. Rudensky. 2005. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6: 331–337
  • Baron, U., S. Floess, G. Wieczorek, et al. 2007. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37: 2378–2389
  • Ohkura, N., Y. Kitagawa, and S. Sakaguchi. 2013. Development and maintenance of regulatory T cells. Immunity. 38: 414–423
  • Randolph, D. A., and C. G. Fathman. 2006. Cd4 + Cd25+ regulatory T cells and their therapeutic potential. Annu. Rev. Med. 57: 381–402
  • Vignali, D. A. 2008. How regulatory T cells work. Nat. Rev. Immunol. 8: 523–532
  • Tang, Q., and J. A. Bluestone. 2008. The FOXP3 + regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 9: 239–244
  • Allan, S. E., S. Q. Crome, N. K. Crellin, et al. 2007. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19: 345–354
  • Miyara, M., Y. Yoshioka, A. Kitoh, et al. 2009. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 30: 899–911
  • Bach, J. F. 2003. Regulatory T cells under scrutiny. Nat. Rev. Immunol. 3: 189–198
  • Horwitz, D. A., S. G. Zheng, and J. D. Gray. 2008. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol. 29: 429–435
  • Kleinewietfeld, M., F. Puentes, G. Borsellino, et al. 2005. CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4 + T-cell subset. Blood. 105: 2877–2886
  • Borsellino, G., M. Kleinewietfeld, D. Di Mitri, et al. 2007. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 110: 1225–1232
  • Baecher-Allan, C., E. Wolf, and D. A. Hafler. 2006. MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol. 176: 4622–4631
  • Haas, J., B. Fritzsching, P. Trübswetter, et al. 2007. Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J. Immunol. 179: 1322–1330
  • Fritzsching, B., N. Oberle, E. Pauly, et al. 2006. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood. 108: 3371–3378
  • Solstad, T., S. J. Bains, J. Landskron, et al. 2011. CD147 (Basigin/Emmprin) identifies FoxP3 + CD45RO + CTLA4+-activated human regulatory T cells. Blood. 118: 5141–5151
  • Ito, T., S. Hanabuchi, Y. H. Wang, et al. 2008. Two functional subsets of FOXP3 + regulatory T cells in human thymus and periphery. Immunity. 28: 870–880
  • Huehn, J., K. Siegmund, and A. Hamann. 2005. Migration rules: functional properties of naive and effector/memory-like regulatory T cell subsets. Curr. Top. Microbiol. Immunol. 293: 89–114
  • Sather, B. D., P., Treuting, N., Perdue, et al. 2007. Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med. 204: 1335–1347
  • Hirahara, K., L. Liu, R. A. Clark, et al. 2006. The majority of human peripheral blood CD4 + CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J. Immunol. 177: 4488–7794
  • Sanchez Rodriguez, R., M. L. Pauli, I. M. Neuhaus, et al. 2014. Memory regulatory T cells reside in human skin. J. Clin. Invest. 124: 1027–1036
  • Bernard, B. A. 2012. The human hair follicle, a bistable organ? Exp. Dermatol. 2: 401–403
  • Lange-Asschenfeldt, B., D. Marenbach, C. Lang, et al. 2011. Distribution of bacteria in the epidermal layers and hair follicles of the human skin. Skin Pharmacol. Physiol. 24: 305–311
  • Chang, C. Y., H. A. Pasolli, E. G. Giannopoulou, et al. 2013. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature. 495: 98–102
  • Gilhar, A., A. Etzioni, and R. Paus. 2012. Alopecia areata. N. Engl. J. Med. 366: 1515–1525
  • Petukhova, L., M. Duvic, M. Hordinsky, et al. 2010. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 466: 113–117
  • Pan, F., H. Yu, E. V. Dang, et al. 2009. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science. 325: 1142–1146
  • Sakaguchi, S., K. Wing, Y. Onishi, et al. 2009. Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21: 1105–1111
  • Conteduca, G., A. Rossi, F. Megiorni, et al. 2014. Single nucleotide polymorphisms in the promoter regions of Foxp3 and ICOSLG genes are associated with Alopecia areata. Clin. Exp. Med. 14: 91–97
  • Buckner, J. H. 2010. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10: 849–859
  • Sugiyama, H., R. Gyulai, E. Toichi, et al. 2005. Dysfunctional blood and target tissue CD4 + CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J. Immunol. 174: 164–173
  • Richetta, A. G., C. Mattozzi, M. Salvi, et al. 2011. CD4+ CD25 + T-regulatory cells in psoriasis. Correlation between their numbers and biologics-induced clinical improvement. Eur. J. Dermatol. 21: 344–348
  • Yan, K. X., X. Fang, L. Han, et al. 2010. Foxp3+ regulatory T cells and related cytokines differentially expressed in plaque vs. guttate psoriasis vulgaris. Br. J. Dermatol. 163: 48–56
  • Quaglino, P., M. Ortoncelli, A. Comessatti, et al. 2009. Circulating CD4 + CD25 bright FOXP3+ T cells are up-regulated by biological therapies and correlate with the clinical response in psoriasis patients. Dermatology. 219: 250–258
  • Bovenschen, H. J., I. M. van Vlijmen-Willems, P. C. van de Kerkhof, and P. E. van Erp. 2006. Identification of lesional CD4+ CD25+ Foxp3+ regulatory T cells in Psoriasis. Dermatology. 213: 111–117
  • Zhang, L., X. Q. Yang, J. Cheng, et al. 2010. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin. Immunol. 135: 108–117
  • Wang, H., T. Peters, A. Sindrilaru, et al. 2008. TGF-beta-dependent suppressive function of Tregs requires wild-type levels of CD18 in a mouse model of psoriasis. J. Clin. Invest. 118: 2629–2639
  • Goodman, W. A., A. D. Levine, J. V. Massari, et al. 2009. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J. Immunol. 183: 3170–3176
  • Clark, R. A. 2010. Skin resident T cells: the ups and downs of on site immunity. J. Invest. Dermatol. 130: 362–370
  • Goodman, W. A., A. B. Young, T. S. McCormick, et al. 2011. Stat3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression. J. Immunol. 186: 3336–3345
  • Harris, T. J., J. F. Grosso, H. R. Yen, et al. 2007. Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179: 4313–4317
  • Bovenschen, H. J., P. C. van de Kerkhof, P. E. van Erp, et al. 2011. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Invest. Dermatol. 131: 1850–1860
  • Miyara, M., G. Gorochov, M. Ehrenstein, et al. 2011. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun. Rev. 10: 744–755
  • Ryder, L. R., E. M. Bartels, A. Woetmann, et al. 2012. FoxP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis. APMIS. 120: 387–396
  • Krejsgaard, T., L. M. Gjerdrum, E. Ralfkiaer, et al. 2008. Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome. Leukemia. 22: 2230–2239
  • Bettelli, E., M. Dastrange, and M. Oukka. 2005. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA. 102: 5138–5143
  • Du, J., C. Huang, B. Zhou, and S. F. Ziegler. 2008. Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J. Immunol. 180: 4785–4793
  • Zikherman, J., and A. Weiss. 2008. Alternative splicing of CD45: the tip of the iceberg. Immunity. 29: 839–841
  • Grigoryev, Y. A., S. M. Kurian, A. A. Nakorchevskiy, et al. 2009. Genome-wide analysis of immune activation in human T and B cells reveals distinct classes of alternatively spliced genes. PLoS One. 4: e7906
  • Ip, J. Y., A. Tong, Q. Pan, et al. 2007. Global analysis of alternative splicing during T-cell activation. RNA. 13: 563–572
  • Heyd, F., G. ten Dam, and T. Möröy. 2006. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing. Nat. Immunol. 7: 859–867
  • Lettesjö, H., E. Nordström, H. Ström, et al. 1998. Synovial fluid cytokines in patients with rheumatoid arthritis or other arthritic lesions. Scand. J. Immunol. 48: 286–292
  • Burska, A., M. Boissinot, and F. Ponchel. 2014. Cytokines as biomarkers in rheumatoid arthritis. Mediat. Inflamm. 2014: 545493
  • Aerts, N. E., E. J. Dombrecht, D. G. Ebo, et al. 2008. Activated T cells complicate the identification of regulatory T cells in rheumatoid arthritis. Cell. Immunol. 251: 109–115
  • Flores-Borja, F., E. C. Jury, C. Mauri, and M. R. Ehrenstein. 2008. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA. 105: 19396–19401
  • Nie, H., Y. Zheng, R. Li, et al. 2013. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 19: 322–328
  • Chang, H. C., S. Sehra, R. Goswami, et al. 2010. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11: 527–534
  • Dardalhon, V., A. Awasthi, H. Kwon, et al. 2008. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat. Immunol. 9: 1347–1355
  • Staudt, V., E. Bothur, M. Klein, et al. 2010. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity. 33: 192–202
  • Veldhoen, M., C. Uyttenhove, J. van Snick, et al. 2008. Transforming growth factor-beta ‘reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9: 1341–1346
  • Kaplan, M. H., N. L. Glosson, G. L. Stritesky, et al. 2011. STAT3-dependent IL-21 production from T helper cells regulates hematopoietic progenitor cell homeostasis. Blood. 117: 6198–6201
  • Tan, C., M. K. Aziz, J. D. Lovaas, et al. 2010. Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J. Immunol. 185: 6795–6801
  • Zhao, P., X. Xiao, R. M. Ghobrial, and X. C. Li. 2013. IL-9 and Th9 cells: progress and challenges. Int. Immunolo. 25: 547–551
  • Knoops, L., and J. C. Renauld. 2004. IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors. 22: 207–215
  • Kaplan, M. H. 2013. Th9 cells: differentiation and disease. Immunol. Rev. 252: 104–115
  • Singh, T. P., M. P. Schön, K. Wallbrecht, et al. 2013. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One. 8: e51752
  • Singh, T. P., B. Huettner, H. Koefeler, et al. 2011. Platelet-activating factor blockade inhibits the T-helper type 17 cell pathway and suppresses psoriasis-like skin disease in K5.hTGF-β1 transgenic mice. Am. J. Pathol. 178: 699–708
  • Schlapbach, C., A. Gehad, C. Yang, et al. 2014. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci. Transl. Med. 6: 219ra218
  • Nowak, E. C., C. T. Weaver, H. Turner, et al. 2009. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206: 1653–1660
  • Elyaman, W., E. M. Bradshaw, C. Uyttenhove, et al. 2009. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA. 106: 12885–12890
  • Ma, L., H. B. Xue, X. H. Guan, et al. 2014. Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis. J. Exp. Immunol. 175: 25–31
  • Sismanopoulos, N., D. A. Delivanis, K. D. Alysandratos, et al. 2012. IL-9 induces VEGF secretion from human mast cells and IL-9/IL-9 receptor genes are overexpressed in atopic dermatitis. PLoS One. 7: e33271
  • Zibert, J. R., K. Wallbrecht, M. Schön, et al. 2011. Halting angiogenesis by non-viral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions. J. Clin. Invest. 121: 410–421
  • Karczewski, J., B. Poniedziałek, P. Rzymski, and Z. Adamski. 2014. Factors affecting response to biologic treatment in psoriasis. Dermatol. Ther. 27: 323–330
  • Veldhoen, M., R. J. Hocking, C. J. Atkins, et al. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24: 179–189
  • Kleinewietfeld, M., and D. A. Hafler. 2013. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin. Immunol. 25: 305–312
  • Hirahara, K., A. Poholek, G. Vahedi, et al. 2013. Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J. Allergy Clin. Immunol. 131: 1276–1287
  • Nakayamada, S., H. Takahashi, Y. Kanno, and J. J. O'Shea. 2012. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24: 297–302
  • O'Shea, J. J., and W. E. Paul. 2010. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 327: 1098–1102
  • Suárez-Fariñas, M., M. A. Lowes, L. C. Zaba, and J. G. Krueger. 2010. Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS One. 5: e10247
  • Swindell, W. R., X. Xing, P. E. Stuart, et al. 2012. Heterogeneity of inflammatory and cytokine networks in chronic plaque psoriasis. PLoS One. 7: e34594
  • Gudjonsson, J. E., J., Ding, A., Johnston, et al. 2010. Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. J. Invest. Dermatol. 130: 1829–1840
  • Ainali, C., N. Valeyev, G. Perera, et al. 2012. Transcriptome classification reveals molecular subtypes in psoriasis. BMC Genomics. 13: 472
  • Swindell, W. R., A. Johnston, J. J. Voorhees, et al. 2013. Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients. BMC Genomics. 14: 527
  • Vasilopoulos, Y., M. Manolika, E. Zafiriou, et al. 2012. Pharmacogenetic analysis of TNF, TNFRSF1A, and TNFRSF1B gene polymorphisms and prediction of response to anti-TNF therapy in psoriasis patients in the Greek population. Mol. Diagn. Ther. 16: 29–34
  • Tejasvi, T., P. E., Stuart, V., Chandran, et al. 2012. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J. Invest. Dermatol. 132: 593–600
  • Belasco, J., J. S. Louie, N. Gulati, et al. 2015. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheumatol. 67: 934–944
  • Mease, P. J., B. S. Goffe, J. Metz, et al. 2000. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet. 356: 385–390
  • Mease, P. J., D. D. Gladman, C. T. Ritchlin, et al. 2005. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52: 3279–3289
  • Papp, K. A., C. Leonardi, A. Menter, et al. 2012. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366: 1181–1189
  • Leonardi, C., R. Matheson, C. Zachariae, et al. 2012. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366: 1190–1199
  • Gottlieb, A., A. Menter, A. Mendelsohn, et al. 2009. Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial. Lancet. 373: 633–640
  • Papp, K. A., R. G. Langley, B. Sigurgeirsson, et al. 2013. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study. Br. J. Dermatol. 168: 412–421
  • Mease, P. J., M. C. Genovese, M. W. Greenwald, et al. 2014. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N. Engl. J. Med. 370: 2295–2306
  • de Souza, A., T. Ali-Shaw, S. M. Reddy, et al. 2013. Inflammatory arthritis following ustekinumab treatment for psoriasis: a report of two cases. Br. J. Dermatol. 168: 210–212
  • Stamell, E. F., A. Kutner, K. Viola, and S. R. Cohen. 2013. Ustekinumab associated with flares of psoriatic arthritis. JAMA Dermatol. 149: 1410–1413
  • Hughes, M., and H. Chinoy. 2013. Successful use of tocilizumab in a patient with psoriatic arthritis. Rheumatology (Oxford). 52: 1728–1729
  • Ogata, A., N. Umegaki, I. Katayama, et al. 2012. Psoriatic arthritis in two patients with an inadequate response to treatment with tocilizumab. Joint, Bone, Spine Rev. Rheum. 79: 85–87

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.