57
Views
42
CrossRef citations to date
0
Altmetric
Review Article

Manipulation of the Th1/Th2 Cell Balance: An Approach to Treat Human Autoimmune Diseases?

, &
Pages 53-68 | Received 22 Jan 1996, Published online: 07 Jul 2009

References

  • Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffmann R. L. Two types of murine helper T cell clone. I. Definition according to profile of lymphokine activities and secreted proteins. J. Immunol. 1986; 136: 2348–2357
  • Del Prete G., De Carli M., Mastromauro C., Biagiotti R., Macchia D., Falagiani P., et al. Purified protein derivative of mycobacterium tuberculosis and secretory-secretory antigen(s) of toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J. Clin. Invest. 1991; 88: 346–350
  • Romagnani S. Human TH1 and TH2: doubt no more. Immunol. Today 1991; 12: 256–257
  • Erard F., Wild M.-T., Garcia-Sanz J. A., Le Gros G. Switch of CD8 T cells to noncytolytic CD8-CD4- cells that make TH2 cytokines and help B cells. Science 1993; 260: 1802–1805
  • Trinchieri G. Interleukin 12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 1995; 13: 251–276
  • Paul W. E., Seder R. A. Lymphocytes responses and cytokines. Cell 1994; 76: 241–251
  • Nanda N. K., Sercarz E. E., Hsu D-H., Kronenberg M. A unique pattern of lymphokine synthesis is a characteristic of certain antigen-specific suppressor T cell clones. Int. Immunol. 1994; 6: 731–737
  • Kelso A., Groves P., Troutt A. B., Francis K. Evidence for the stochastic acquisition of cytokine profile by CD4+ T cells activated in a T helper type 2-like response in vivo. Eur. J. Immunol. 1995; 25: 1168–1175
  • Kelso A. Th1 and Th2 subsets: paradigms lost?. Immunol Today 1995; 16: 374–379
  • Pernis A., Gupta S., Gollob K. J., Garfein E., Coffman R. L., Schindler C., et al. Lack of interferon γ receptor β chain and the prevention of interferon γ signaling in Th1 cells. Science 1995; 269: 245–247
  • Bach E. A., Szabo S., Dighe A. S., Ashkenazi A., Aguet M., Murphy K. M., et al. Ligand-induced auto-regulation of IFN-γ receptor β chain expression in T helper cell subsets. Science 1995; 270: 1215–1218
  • Szabo S. J., Jacobson A. G., Gubler U., Murphy K. M. Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 1995; 2: 665–675
  • Jacobson N. G., Szabo S. J., Gueler M. L., Gorham J. D., Murphy K. M. Regulation of interleukin-12 signal transduction during T helper phenotype development. Res. Immunol. 1995; 146
  • Hsieh C.-S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549
  • Manetti R., Parronchi P., Giudizi M. G., Piccinni M.-P., Maggi E., Trinchieri G., et al. Natural killer cell stimulatory factor (interleukin 12, IL-12) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 1993; 177: 1199–1204
  • Afonso L. C. C., Scharton T. M., Vieira L. Q., Wysocka M., Trinchieri Scott P. The adjuvant effect of interleukin-12 in a vaccine against. Leishmania major Science 1994; 263: 235–237
  • Kiniwa M., Gately M., Gubler U., Chizzonite R., Fargeas C., Delespesse G. Recombinant interleukin-12 suppresses the synthesis of IgE by inter-leukin-4 stimulated human lymphocytes. J. Clin. Invest. 1992; 90: 262–266
  • Schmitt E., Hoehn P., Huels C., Goedert S., Palm N., Ruede E., et al. T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-y and is inhibited by transforming growth factor-β. Eur. J. Immunol. 1994; 24: 793–798
  • Gajewski T. F., Fitch F. W. Anti-proliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J. Immunol. 1988; 140: 4245–4253
  • Moore K., O'Garra A., de Waal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annu. Rev. Immunol. 1993; 11: 165–190
  • D'Andrea A., Aste-Amezaga M., Valiante N. M., Ma X., Kubin M., Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon-γ production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J. Exp. Med. 1993; 178: 1041–1048
  • de Waal Malefyt R., Figdor C. G., Huijbens R., Mohan-Peterson S., Bennett B., Culpepper J., et al. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-γ or IL-10. J. Immunol. 1993; 151: 6370–6381
  • Powrie F., Coffmann R. L. Cytokine regulation of T cell function: potential for therapeutic intervention. Immunol. Today 1993; 14: 270–274
  • O'Garra A., Murphy K. T-cell subsets in autoimmunity. Curr. Opin. Immunol. 1993; 5: 880–886
  • Liblau R. S., Singer S. M., McDevitt H. O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol. Today 1995; 16: 34–38
  • Trembleau S., Germann T., Gately M. K., Adorini L. The role of IL-12 in the induction of organ-specific autoimmune diseases. Immunol. Today 1995; 16: 383–386
  • Ando D. G., Clayton J., Kong D., Urban J. L., Sercarz E. E. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th1 lymphokine subtype. Cell Immunol. 1989; 124: 132–143
  • Haskins K., McDuffie M. Acceleration of diabetes in young NOD mice with a CD4+ islet specific T cell clone. Science 1990; 249: 1433–1436
  • Bergman B., Haskins K. Islet-specific T-cell clones from the NOD mouse respond to beta-granule antigen. Diabetes 1994; 43: 197–203
  • Katz J. D., Benoist C., Mathis D. T helper cell subsets in insulin-dependent diabetes. Science 1995; 268: 1185–1188
  • Yang X-D., Tisch R., Singer S. M., Cao Z. A., Liblau R. S., Schreiber R. D., et al. Effect of tumor necrosis factor a on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process. J. Exp. Med. 1994; 180: 995–1004
  • Wogesen L., Lee M.-S., Sarvetnick N. Production of interleukin 10 by islet cells accelerates immune-mediated destruction of β cells in nonobese diabetic mice. J. Exp. Med. 1994; 179: 1379–1384
  • Anderson J. T., Cornelius J. G., Jarpe A. J., Winter W. E., Peck A. B. Insulin-dependent diabetes in the NOD mouse model. II. Beta cell destruction in autoimmune diabetes is a Th2 and not a Th1 mediated event. Autoimmunity 1993; 15: 113–122
  • Akhtar I., Gold J. P., Pan L-Y., Ferrara J. L., Yang X-D., Kim J. I., et al. CD4+ β islet cell-reactive T cell clones that suppress autoimmune diabetes in nonobese diabetic mice. J. Exp. Med. 1995; 182: 87–97
  • Rapoport M. J., Jaramillo A., Zipris D., Lazarus A. H., Serreze D. V., Leiter E. H., et al. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J. Exp. Med. 1993; 178: 87–99
  • Pennline K. J., Roquegaffney E., Monahan M. Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin. Immunol. Immunopathol 1994; 71: 169–175
  • Fowell D., Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J. Exp. Med. 1993; 177: 627–636
  • Scott B., Liblau R., Degermann S., Marconi L. A., Ogata L., Caton A. J., et al. A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1994; 1: 1–20
  • Racke M. K., Bonomo A., Scott D. E., Cannella B., Levine A., Raine C. S., et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 1994; 180: 1961–1966
  • Allen J. B., Wong H. L., Costa G. L., Bienkowski M. J., Wahl S. M. Suppression of monocyte function and differential regulation of IL-1 and IL-1ra by IL-4 contribute to resolution of experimental arthritis. J. Immunol. 1993; 151: 4344–4351
  • van der Veen R. C., Stohlman S. A. Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10. J. Neuroimmunol 1993; 48: 213–220
  • Khoury S. J., Hancock W. W., Weiner H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interlukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 1992; 176: 1355–1364
  • Healey D., Ozegbe P., Arden S., Chandler P., Hutton J., Cooke A. In vivo activity and in vitro specificity of CD4+ Th1 and Th2 cells derived from the spleens of diabetic NOD mice. J. Clin. Invest. 1995; 95: 2979–2985
  • Moritani M., Yoshimoto K., Tashiro F., Hashimoto C., Miyazaki J., Li S., et al. Transgenic expression of IL-10 in pancreatic islet A cells accelerates autoimmune insulitis and diabete in non-obese diabetic mice. Int. Immunol. 1994; 6: 1927–1936
  • De Carli M., D'Elios M., Mariotti S., Marcocci C., Pinchera A., Ricci M., et al. Cytolytic T cells with Th1-like cytokine profile predominate in retrorbital lymphocytic infiltrates of Graves' ophthalmopathy. J. Clin. Endocrinol. Metab. 1993; 77: 1120–1124
  • Brod S. A., Benjamin D., Hafler D. A. Restricted T cell expression of IL-2, IFN-γ mRNA in human inflammatory disease. J. Immunol. 1991; 147: 810–815
  • Foulis A. K., McGill M., Farquahrson M. A. Insulitis in type I (insulin-dependent) diabetes mellitus in man. Macrophages, lymphocytes and interferon-γ-containing cells. J. Pathol. 1991; 165: 97–103
  • Miltenburg A. M., van Laar J. M., de Kuiper R., Daha M. R., Breed veld F. C. T cells cloned from human rheumatoid synovial membrane functionally represent the Th1 subset. Scand. J. Immunol. 1992; 35: 603–610
  • De Carli M., D'Elios M. M., Zancuoghi G., Ramagnani S., Del Prete G. Human TH1 and TH2 cells: functional properties, regulation of development and role in autoimmunity. Autoimmunity 1994; 18: 301–308
  • Simon A. K., Seipelt E., Sieper J. Divergent T-cell cytokine patterns in inflammatory arthritis. Proc. Natl Acad. Sci. USA 1994; 91: 8562–8566
  • Romagnani S. Lymphokine production by human T cells in disease states. Annu. Rev. Immunol. 1994; 12: 227–257
  • Constant S., Pfeiffer C., Woodard A., Pasqualini T., Bottomly K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 1995; 182: 1591–1596
  • Hosken N. A., Shibuya K., Heath A. W., Murphy K. M., O'Garra A. The effect of antigen dose on CD4+ helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med. 1995; 182: 1579–1584
  • Burstein H. J., Shea C. M., Abbas A. K. Aqueous antigens induce in vivo tolerance selectively in IL-2-and IFN-γ-producing (Th1) cells. J. Immunol. 1992; 148: 3687–3691
  • De Wit D., Van Mechelen M., Ryelandt M., Figueiredo A. C., Abramowicz D., Goldman M., et al. The injection of deaggregated gamma globulins in adult mice induces antigen-specific unresponsiveness of T helper type 1 but not type 2 lymphocytes. J. Exp. Med. 1992; 175: 9–14
  • Guéry J-C., Galbiati F., Smiroldo S., Adorini L. Selective development of Th2 cells induced by continuous administration of low dose soluble proteins to normal and β2-microglobulin-deficient BALB/c mice. J. Exp. Med. 1996; 186: 485–497
  • Yoshimoto T., Paul E. P. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 1994; 179: 1285–1295
  • Bendelac A., Killeen N., Littman D. L., Schwartz R. H. A subset of CD4+ thymocytes selective by MHC class I molecules. Science 1994; 263: 1774–1778
  • Coles M. C., Raulet D. H. Class I dependence of development of CD4+ CD8- NK1.1+ thymocytes. J. Exp. Med. 1994; 180: 395–399
  • Launois P., Okteki T., Swihart K., MacDonald H. R., Louis J. A. In susceptible mice, Leishmania major induce very rapid interleukin-4 production by CD4+ T cells which are NK1.1-. Eur. J. Immunol. 1995; 25: 3298–3307
  • Day M. J., Tse A. G. D., Puklavec M., Simmonds S. J., Mason D. W. Targeting autoantigen to B cells prevents the induction of a cell-mediated autoimmune disease in rats. J. Exp. Med. 1992; 175: 655–659
  • Saoudi A., Simmonds S., Huitinga I., Mason D. W. Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of autoantigen-specific T cells. J. Exp. Med. 1995; 182: 335–344
  • Ernon E. E., Parker D. C. Parameters of tolerance induction by antigen targeted to B lymphocytes. J. Immunol. 1993; 151: 2958–2964
  • Lider O., Santos L. M. B., Lee C. S. Y., Higgins D. J., Weiner H. L. Suppression of experimental autoimmune encephalomylitis by oral administration of myelin basic protein II. Suppression of disease and in vitro response is mediated by CD8 + T lymphocytes. J. Immunol. 1989; 142: 748
  • Miller A., Lider O., Roberts A. B., Sporn M. B., Weiner H. L. Suppressor T cells generated by oral tolerizsation to myelin basic protein suppress both in vitro, in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc. Natl Acad. Sci. USA 1992; 89: 421–425
  • O'Garra A., Murphy K. Role of cytokines in determining T-lymphocyte function. Curr. Opin. Immunol. 1994; 6: 458–466
  • Karpus W. J., Gould K. E., Swanborg R. H. CD4 + suppressor cells of autoimmune encephalomylitis respond to T cell receptor-associated determinants on effector cells by interleukin-4 secretion. Eur. J. Immunol. 1992; 22: 1757–1763
  • Harrison L. C. Islet cell autoantigens in insulin-dependent diabetes: Pandora's box re-visited. Immunol. Today 1992; 13: 348–352
  • Kaufman D. L., Clare-Salzler M., Tian J., Forsthuber T., Ting G. S. P., Robinson P., et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993; 366: 69–72
  • Tisch R., Yang X-D., Singer S. M., Liblau R. S., Fugger L., McDevitt H. O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993; 366: 72–75
  • Briner T., Kuo M-C., Keating K. M., Rogers B. L., Greenstein J. L. Peripheral T cell tolerance induce in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d I. Proc. Natl Acad. Sci. USA 1993; 90: 7608–7612
  • Weiner H. L., Friedman A., Miller A., Khoury S. J., Al-Sabbagh A., Santos L., et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol. 1994; 12: 809–837
  • Chen Y., Inobe J-I., Marks R., Gonnella P., Kuchroo V. K., Weiner H. L. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 1995; 376: 177–180
  • Critchfield J. M., Racke M. K., Zuniga-Pflucker J. C., Cannella B., Raine C. S., Goverman J., et al. T cell Deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 1994; 263: 1139–1143
  • Weinberg A. D., Whitham R., Swain S. L., Morrison W. J., Wyrick G., Hoy C., et al. Transforming growth factor beta enhances the in vivo effector function and memory phenotype of antigen-specific T helper cells in experimental autoimmune encephalomylitis. J. Immunol. 1992; 148: 2109–2117
  • Metzler B., Wraith D. C. Inhibition of experimental autoimmune encephalitis by inhalation but not by oral administration of encephalitogenic peptide: influence of MHC binding. Int. Immunol. 1992; 5: 1159–1165
  • Weiner H. L., Mackin G. A., Matsui M., Orav E. J., Khoury S. J., Dawson D. M., et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993; 259: 1321–1324
  • Trentham D. E., Dynesius-Trentham R. A., Orav E. J., Combitchi D., Lorenzo C., Sewell K. L., et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 1993; 261: 1727–1730
  • Pfeiffer C., Stein J., Southwood S., Ketelaar H., Setta A., Bottomly K. Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J. Exp. Med. 1995; 181: 1569–1574
  • Evavold B. D., Allen P. M. Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 1991; 252: 1308–1310
  • Seder R. A., Paul W. E., Davis M. M., de Fazekas B. St. Groth. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4 + T cells from T cell receptor transgenic mice. J. Exp. Med. 1992; 176: 1091–1098
  • Hsieh C. S., Heimberger A., Gold J., O'Garra A., Murphy K. Differential regulation of T helper phenotype development by IL-4 and IL-10 in α, β T-cell receptor transgenic system. Proc. Natl Acad. Sci. USA 1992; 89: 6065–6069
  • De Magistris T. M., Alexander J., Coggeshall M., Altman A., Gaeta F. C. A., Grey H. M., et al. Antigen analog-major histocompatibility complexes act as antagonists of the T cell receptor. Cell 1992; 68: 625–634
  • Jameson S. C., Carbone F. R., Bevan M. J. Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J. Exp. Med. 1993; 177: 1541–1550
  • Evavold B. D., Sloan-Lancaster J., Allen P. M. Tickling the TCR: selective T cell functions stimulated by altered peptide ligands. Immunol. Today 1993; 14: 602–609
  • Wegener A. M., Letourner F., Hoeveler A., Broker T., Luton F., Malissen B. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell 1992; 68: 83–95
  • Sloan-Lancaster J., Shaw A. S., Rothbard J. B., Allen P. M. Partial T cell signaling: altered phospho-ζ and lack of zap70 recruitment in APL-indcued T cell anergy. Cell 1994; 79: 913–922
  • Madrenas J., Wange R. L., Wang J. L., Isakov N., Samelson L. E., Germain R. N. ζ phosphorylation without zap-70 activation induced by TCR antagonists or partial agonists. Science 1995; 267: 515–518
  • Sloan-Lancaster J., Evavold B. D., Allen P. M. Induction of T cell anergy by altered T cell receptor ligand on live antigen-presenting cells. Nature 1993; 363: 156–159
  • Sloan-Lancaster J., Evavold B., Allen P. M. Th2 cell clonal energy as a consequence of partial activation. J. Exp. Med. 1994; 180: 1195–1205
  • Klenerman P., Rowland-Jones S., McAdam S., Edwards J., Daenke S., Lalloo D., et al. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 1994; 369: 403–407
  • Bertoletti A., Sette A., Chisari F. V., Penna A., Levrero M., De Carli M., et al. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 1994; 369: 407–410
  • Franco A., Southwood S., Arrhenius T., Kucroo V. K., Grey H. M., Sette A., et al. T cell receptor antagonist peptides are effective inhibitors of experimental allergic encephalomyelitis. Eur. J. Immunol. 1994; 24: 940–946
  • Karin N., Mitchell D. J., Brocke S., Ling N., Steinman L. Reversal of Experimental Autoimmune Encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon y and tumor necrosis factor a production. J. Exp. Med. 1994; 18: 2227–2237
  • Nicholson L. B., Greer J. M., Sobel R. A., Lees M. B., Kuchroo V. K. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 1995; 3: 397–405
  • Windhagen A., Scholz C., Hollsberg P., Fukaura H., Sette A., Hafler D. A. Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 1995; 2: 373–380
  • Smilek D. E., Wraith D. C., Hodgkinson S., Dwivedy S., Steinman L., McDevitt H. O. A single amino acid change in myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 1991; 88: 9633–9637
  • Gautam A. M., Pearson C. I., Smilek D. E., Steinman L., McDevitt H. O. A polyalanine peptide with only five native myelin basic protein residues induces autoimmune encephalomyelitis. J. Exp. Med. 1992; 176: 605–609
  • Wauben M. H. M., Boog C. J. P., van der Zee R., Joosten L., Schlief A., van Eden W. Disease inhibition by major histocompatibility complex binding peptide analogues of disease-associated epitopes: more than blocking alone. J. Exp. Med. 1992; 176: 667–677
  • Wolf S. F., Temple P. A., Kobayashi M., Young D., Dicig M., Lowe L., et al. Cloning of cDNA for natural killer stimulatory factor, a heterodimeric cytokine ith multiple biological effects on T and natural killer cells. J. Immunol. 1991; 146: 3074–3081
  • Gubler U., Chua A. O., Schoenhaut D. S., Dwyer C. M., McComas W., Motyka R., et al. Coexpression of two distinct genes is required to generate secreted, bioactive cytotoxic lymphocyte maturation factor. Proc. Natl. Acad. Sci. USA 1991; 88: 4143–4147
  • Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 1994; 84: 4008–4027
  • Germann T., Gately M., Schoenhaut D. S., Lohoff M., Mattner F., Fischer S., et al. Interleukin-12/T cell stimulating factor, a cytokine with multiple effects on T helper type 1 (Th1) but not on Th2 cells. Eur. J. Immunol. 1993; 23: 1762–1770
  • Trembleau S., Penna G., Bosi E., Mortara A., Gately M. K., Adorini L. IL-12 administration induces Th 1 cells and accelerates autoimmune diabetes in NOD mice. J. Exp. Med. 1995; 181: 817–821
  • Magram J., Sfarra J., Connaughton S., Faherty D., Warrier R., Carvajal D., et al. IL-12 deficient mice are defective but not devoid of type 1 cytokine responses. New York Acad. Sci. 1996, in press
  • Leonard J. P., Waldburger K. E., Goldman S. J. Prevention of experimental autoimmune encephalo-myelitis by antibodies against interleukin-12. J. Exp. Med. 1995; 181: 381–386
  • Germann T., Szeliga J., Hess H., Stoerkel S., Podlaski F. J., Gately M. K., et al. Administration of IL-12 in combination with type II collagen induces severe arthritis in DBA/1 mice. Proc. Natl Acad. Sci. USA 1995; 92: 4823–4827
  • Neurath M. F., Fuss I., Kelsall B. L., Stueber E., Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 1995; 182: 1281–1290
  • Chua A. O., Chizzonite R., Desai B. B., Truitt T. P., Nunes P., Minetti L. J., et al. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J. Immunol. 1994; 153: 128–136
  • Chua A. O., Wilkinon V. L., Presky D. H., Gubler U. Cloning and characterization of a mouse IL-12 receptor β component. J. Immunol. 1995; 155: 4286–4294
  • Murphy E. E., Terres G., Macatonia S. E., Hsieh C-S., Mattson J., Lanier L., et al. B7 and interleukin 12 cooperate for proliferation and interferon γ production by mouse T helper clones that are unresponsive to B7 costimulation. J. Exp. Med. 1994; 180: 223–231
  • Ding L., Linsley P. S., Huang L. Y., Germain R. N., Shevach E. M. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J. Immunol. 1993; 151: 1224–1234
  • Fiorentino D. F., Zlotnik A., Mosmann T. R., Howard M. H., O'Garra A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 1991; 147: 3815–3622
  • de Waal Malefyt R., Abrams J., Bennett B., Figdor C., de Vries J. IL-10 inhibits cytokine synthesis by human monocytes; an auto-regulatory role of IL-10 produced by monocytes. J. Exp. Med. 1991; 174: 1209–1220
  • Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin 10. J. Exp, Med. 1991; 174: 1549–1555
  • Bromberg J. S. IL-10 immunosuppression in transplantation. Curr. Opin. Immunol. 1995; 7: 639–643
  • Kuehn R., Loehler J., Rennick D., Rajewsky K., Mueller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–274
  • Powrie F., Leach M. W., Mauze S., Menon S., Caddie L. B., Coffman R. L. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994; 1: 553–562
  • Chatelain R., Varkila K., Coffman R. L. IL-4 induces a Th2 response in Leishmania major-infected mice. J. Immunol. 1992; 148: 1182–1187
  • Sadick M. D., Heinzel F. P., Holaday B. J., Pu R. T., Dawkins R. S., Locksley R. M. Cure of murine leishmaniasis with anti-interleukin-4 monoclonal antibody. Evidence for a T cell-dependent mechanism. J. Exp. Med. 1990; 171: 115–127
  • Powrie F., Menon S., Coffman R. L. Interleukin-4 and interleukin-10 synergize to inhibit cell-mediated immunity in vivo. Eur. J. Immunol. 1993; 23: 3043–3049
  • Shehadeh N., Calcinaro F., Bradley B. J., Bruchlim I., Vardi P., Lafferty K. J. Effect of adjuvant therapy on development of diabetes in mouse and man. Lancet 1994; 343: 706–707
  • Rabinovitch A., Suarez-Pinzon W. L., Sorensen O., Bleackley R. C., Power R. F. IFN-γ gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice. J. Immunol. 1995; 154: 4874–4882
  • Kingsley G., Lanchbury J., Panayi G. Immunotherapy in rheumatic disease: an idea whose time has come—or gone?. Immunol. Today 1996; 17: 9–12
  • Keffer J., Probert L., Cazlaris H., Georgopulos S., Kaslaris E., Koussis D., et al. Transgenic mice expressing human tumor necrosis factor—a predictive genetic model of arthritis. EMBO J. 1991; 13: 4025–4031
  • Williams R. O., Feldmann M., Maini R. N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl Acad. Sci. USA 1992; 89: 9784–9788
  • Elliott M. J., Maini R. N., Feldmann M., Long-Fox A., Charles P., Katsikis P., et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor a. Arthritis Rheum 1993; 36: 1681–1690
  • Haak-Frendscho M., Marsters S. A., Mordenti J., Brady S., Gillett N. A., Chen S. A., et al. Inhibition of TNF by a TNF receptor immunoadhesin. Comparison to an anti-TNF monoclonal antibody. J. Immunol. 1994; 152: 1347–1353
  • Baker D., Butler D., Scallon B. J., O'Neill J. K., Turk J. L., Feldmann M. Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. Eur. J. Immunol. 1994; 24: 2040–2048
  • Reiner S. L., Locksley R. M. The regulation of immunity to Leishmania Major. Annu. Rev. Immunol. 1995; 13: 151–177
  • Heinzel F. P., Schoenhaut D. S., Rerko R. M., Rosser L. E., Gately M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 1993; 177: 1505–1559

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.