4
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Abnormal Signal Transduction Through CD4 Leads to Altered Tyrosine Phosphorylation in T Cells Derived from MRL-lpr/lpr Mice

, &
Pages 231-243 | Received 01 Aug 1995, Published online: 07 Jul 2009

References

  • Murphy E. D., Roths J. B. Automimmunity and lymphoprollferation induction by mutant gene, Ipr, and acceleration of a male‐association factor in strain BXSB mice. Genetic Control of Autoimmune Disease, N. R. Rose, P. E. Bigazzl, N. L. Warner. Elsevier, North Holland 1978; 207
  • Izui S., Kelley V. E., Masuda K., Yoshida H., Roths J. B., Murphy E. D. Induction of various autoantibodies by mutant gene Ipr in several strains of mice. J. Immunoll. 1984; 133: 227
  • Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv. Immunol, F. J. Dixon. Academic Press. 1985; 269–390
  • Mountz J. D., Zhou T., Eldridge J., Berry K., Bluthmann H. Transgenic rearranged T cell receptor gene inhibits lymphadenopathy and accumulation of CD4−CD8 −B220+ T cells in lpr/lpr mice. J. Exp. Med. 1990; 172: 1805–1817
  • Guitierrez‐Ramos J. C., Pezzi L., Palacios R., Martinez C. Expression of the p75 interleukin 2 ‐ binding protien on CD3+4–8‐ Tac‐cells form autoimmune MRLIMP‐lpr/lpr mice. Eur. J. Immunol. 1989; 19: 201–204
  • Rosenberg Y. J., Steinberg A. D., Santoro T. J. T cells from autoimmune IL‐2 defective MRL‐lpr/lpr mice continue to grow in vitro and produce IL‐2 constitutively. J. Immunol. 1984; 133: 2545–2548
  • Asano T., Tomooka S., Serushago B. A., Himeno K., Nomoto K. A new T cell subset expressing B220 and CD4 in 1pr mice: defects in the response to mitogens and in the production of IL‐2. Clin. Exp. Immunol. 1988; 74: 36–40
  • Chandy K. G., DeCoursey T. E., Fischbach M., Talal N., Cahalan M. D., Gupta S. Altered K+ channel expression in abnormal T lymphocytes from mice with the lpr gene mutation. Science 1986; 233: 1197–1200
  • Kariyone A., Takiguchi M., Igarashi S., Kano K. Ontogeny and function of B220* L3T4+ T‐cell subset of MRL/Mp‐lpr/lpr mice. Cell Immunol. 1988; 115: 112–120
  • Kelley V. E., Strom T. B. Spleen cell factor, lym‐phoproliferation, abnormal la expression and overt autoimmunity in MRL‐lpr mice 1. Clin. Immunol. Immunopath. 1986; 41: 145–153
  • Santoro T. J., Malek T. R., Rosenberg Y. J., Morse H. C., III, Steinberg A. D. Signals required for activation and growth of autoimmune T lymphocytes. J. Mol. Cell Immunol. 1984; 1: 347–356
  • Tomita‐Yamaguchi M., Santoro T. J. Constitutive turnover of inositol‐containing phospholipids in B220+ T cells from autoimmune‐prone MRL‐lpr/lpr mice. J. Immunol. 1990; 144: 3946–3952
  • Tomita‐Yamaguchi M., Babich J. F., Baker R. C., Santoro T. J. Incorporation, distribution, and turnover of arachldonic acid within membrane phospholipids of B220+ T cells from autoimmune‐prone MRL‐lpr/lpr mice. J. Exp. Med. 1990; 171: 787–800
  • Mountz J. D., Smith T. M., Toth K. S. Altered expression of self‐reactive T cell receptor Vβ regions in autoimmune mice. J. Immunol. 1990; 144: 2159–2166
  • Wofsy D., Hardy R., Seaman W. The proliferating cells in autoimmune MRL/lpr mice lack L3T4, an antigen on helper T cells is involved in the response to class II major histocompatibility antigens. J. Immunol. 1984; 132: 2686–2689
  • Wofsy D., Ledbetter J. A., Hendler P. L., Seaman W. E. Treatment of murine lupus with monoclonal anti‐T cell antibody. J. Immunol. 1985; 134: 852–857
  • Tarkowski A., Jonsson R., Sanchez R., Klareskog L., Koopman W. J. Features of renal vasculitis in autoimmune MRL lpr/lpr mice: Phenotypes and functional properties of infiltrating cells. Clin. Exp. Immunol. 1988; 72: 91–97
  • Santoro T. J., Portanova J. P., Kotzin B. L. The contribution of L3T4 + T cells to lymphoproliferation and autoantibody production in MRL‐lpr/lpr mice. J. Exp. Med. 1988; 167: 1713–1718
  • Jabs D. A., Prendergast R. A. Reactive lymphocytes in lacrimal gland and vasculitic renal lesions of autoimmune MRL/lpr mice express L3T4. J. Exp. Med. 1987; 166: 1198–1203
  • Theofilopoulos A. N., Eisenberg R. A., Bourdon M., Crowell J. S., Jr., Dixon F. J. Distribution of lymphocytes identified by surface markers in murine strains with systemic lupus erythematosus‐like syndromes. J. Exp. Med. 1979; 149: 516–534
  • Wantanbe‐Fukunaga R., Brannan C. I., Copeland N. G., Jenkins N. A., Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356: 314–317
  • Deusch K., Fernandez‐Botran R., Konstadoulakis M., Baur K., Schwartz R. S., Madaio M. P. Autoreactive T cells from MRL lpr/lpr mice secrete multiple lymphok‐ines and induce the production IgG anti‐DNA antibodies. J Autoimmunity. 1991; 4: 563–576
  • Naparstek Y., Baur K., Reis M. D., Breitman L., Mak T. W., Schwartz R. S., Madaio M. P. Autoreactive T cells with atypical MHC restriction from MRL lpr/lpr mice: Forbidden clones revisited. J. Mol. Cell Immunol. 1988; 4: 35–43
  • Hsi E. D., Siegel J. N., Minami Y., Luong E. T., Klausner R. D., Samelson L. E. T cell activation induces rapid tyrosine phosphorylation of a limited number of cellular substrates. J. Biol. Chem. 1989; 264: 10836–10842
  • Burkhardt A. L., Brunswick M., Bolen J. B., Mond J. J. Anti‐immunoglobulin stimulation of B lymphocytes activates src‐related protein‐tyrosine kinases. Proc. Natl. Acad. Sci. 1991; 88: 7410–7414
  • Danielian S., Fagard R., Alcover A., Acuto O., Fischer F. The tyrosine kinase activity of p56lck is increased in human T cells activated via CD2. Eur. J. Immunol. 1991; 21: 1967–1970
  • Pankewycz O. G., Migliorini P., Madaio M. P. Polyreactive autoantibodies are nephritogenic in murine lupus nephritis. J. Immunol. 1987; 139: 3287–3294
  • Ettehadieh E., Snanghera J. S., Pelech S. L., Hess‐Bienz D., Watts J., Shastri N., Aebersold R. Tyrosyl phosphorylation and activation of MAP kinases by p56lck. Science 1992; 853
  • Katagiri T., Urakawa K., Yamanashi Y., Semba K., Takahashi T., Toyoshima K., Yamamoto T., Kano K. Overexpression of src family gene for tyrosine kinase p59fyn in CD4‐CD8‐ T cells of mice with a lymphoproliferative disorder. Proc. Natl. Acad. Sci. 1989; 86: 10064–10068
  • Katagiri T., Ting J. Y.‐T., Dy R., Prokop C., Cohen P., Eark H. S. Tyrosine phosphorylation of a c‐Src‐like protein is increased in membrane of CD4‐ CD8‐ T lymphocytes from lpr/lpr mice. Mol. Cell Bio. 1989; 9: 4914–4922
  • Samelson L. E., Davidson W. F., Morse H. C., III, Klausher R. D. Abnormal tyrosine phosphorylation on T‐cell receptor in lymphoproliferative disorders. Nature 1986; 324: 674–676
  • Kelley V., Wilion F., Williams J. M. A functional analysis of the T cell defect in MRL‐lpr mice. Cell Immunol. 1986; 97: 210–219
  • Lorenz U., Ravichanran K. S., Pei D., Walsh C. T., Burakoff S. J., Neel B. G. Lck‐Dependent Tyrosyl Phosphorylation of the Phosphotyrosine Phosphatase SH‐PTPI in Murine T Cells. Molec. Cell Biol. 1994; 14: 1824–1834
  • DeFranco A. L. Signalling pathways activated by protein tyrosine phosphorylation in lymphocytes. Curr. Opinion Immun. 1994; 6: 364–371
  • Chan A. C., Desai D. M., Weiss A. the role of protein tyrosine kinases and protein phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immnol. 1994; 12: 555–592
  • Wallace V. A., Penninger J., Mak T. W. CD4, CD8 and tyrosine kinases in thymic selection. Curr. Op. Imm. 1993; 5: 235–240
  • Veillette A., Bookman M. A., Horak E. M., Bolen J. B. The CD4 and CD8 T cell surface antigen are associated with the internal membrane tyrosine‐protein kianse p56lck cell. Cell. 1988; 53: 301–308
  • June C. H., Fletcher M. C., Ledbetter J. A., Samelson L. E. Increase in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J. Immunol. 1990; 144: 1591–1599
  • Glaichenhaus N., Shastri N., Littman D. R., Turner J. M. Requirement for association of p56lck with CD4 in antigen‐specific signal transduction in T cells. Cell. 1991; 64: 511–520
  • Collins T. L., Uniyal S., Shin J., Strominger J. L., Mittler R. S., Burakoff S. J. P56 Lck association with CD4 is required for the interaction between CD4 and the TCR/CD3 complex and for optimal antigen stimulation. J. Immunol. 1992; 148: 2159–2162
  • Dianzani U., Shaw A., Al‐Ramadi B. K., Kubo R. T., Janeway C. A., Jr. Physical association of CD4 with the T cell receptor. J. Immunol. 1992; 148: 678–688
  • Rudd C. E., Barber E. K., Burgess K. E., Hahn J. Y., Odysseos A. D., Sy M. S., Schlossman S. F. Molecular analysis of the interaction of p56lck with the CD4 and CD8 antigens. Mech. Lymph. Act. Imm. Reg. 1991; 111: 85–94
  • Collins T. L., Hahn W. C., Bierer B. E., Burakoff S. J. CD4, CD8 and CD2 in T Cell Adhesion and Signaling. Curr. Top. Microbioll. Immunol. 1993; 184: 223–233
  • Quill H., Riley M. P., Cho E. A., Casnelle J. E., Reed J. C., Torigoe T. Anergic Thl cells express altered levels of the protein tyrosine kinases p56ck and p59fyn. J. Immunol. 1992; 149: 2887–2893
  • Johnston J. A., Kawamura M., Kirken R. A., Chen Y. ‐Q., Blake T. B., Shibuya K., Ortaldo J. R., McVicar D. W., O'Shea J. J. Phosphorylation and activation of the Jak‐3 kinase in response to IL‐2. Nature 1994; 370: 151–153
  • Guidos C. J., Danska J. S., Fathman C. G., Weissman I. L. T cell receptor‐mediated negative selection of autoreactive T lymphocyte precursors occurs after committment to the CD4 or CD8 lineages. J. Exp. Med. 1990; 172: 835–845
  • Sha W. C., Nelson C. A., Newberry R. D., Kranz D. M., Russell J. H. Selective expression of an antigen receptor on CD8‐ bearing T lymphocytes in transgenic mice. Nature 1988; 335: 271
  • Zuniga‐Pfucker J. C., Longo D. L., Kruisbeek A. M. Positive selection of CD8+ T cells in the thymus of normal mice. Nature 1989; 338: 76–79
  • Molina T. J., Kishihara K., Siderovski D. P., Van Ewijk W., Narendran A., Timms E., Wakeham A., Paige C. J., Hartmaun K. ‐U., Veillette A., Davidson D., Mak T. W. Profound block in thymocyte development in mice lacking p56lck. Nature 1992; 357: 161–164
  • Wallace V., Rahemtulla A., Timms E., Penniger J., Mak T. W. CD4 expression is differentially required for deletion of Mls‐la‐reactive T cells. J. Exp. Med. 1992; 176: 1459–1463
  • Waanders G. A., MacDonald H. R. Hierarchy of responsiveness in vivo and in vitro among T cells expressing distinct Mls‐1a reactive Vβ domains. Eur. J. Immunol. 1992; 22: 291–293
  • Nakayama T., Samelson L. E., Nakayama Y., Munitz M., Sheard S. A., June C. H. Singer, A. Ligand‐simiulated signaling events in immature CD4 + CD8 + thymocytes expressing competent T cell receptor complexes. Proc. Natl. Acad. Sci. USA. 1991; 88: 9949–53
  • Nakayama T., June C. H., Munitz M., Sheard S. A., McCarthy S. O., Sharrow S. O., Samelson L. E., Singer A. Inhibition of T cell receptor expression and function in immature CD4 + CD8 + cells by CD4. Science 1990; 249: 1558
  • McCarthy S. A., Kruisbeek A. M., Uppenkamp I. K., Sharrow S. O., Singer A. Engagement of the CD4 molecule influences cell surface expression of the T‐cell receptor on thymocytes. Nature 1988; 336: 76–79
  • Wiest D. L., Yuan L., Jefferson J., Benveniste P., Tsokos M., Klausner R. D., Glimcher L., Sameleson L. E., Singer A. Regulation of T cell receptor expression in immature thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med. 1994; 178: 1701–1712
  • Singer G. G., Abbas A. K. The fas antigen is involved in peripheral but not thymic deletion of T‐lymphocytes in T cell receptor transgenic mice. Immunity. 1994; 1: 365–371

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.