16
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Interleukin-13 Counteracts Suppression Induced by Interleukin-1β of Glucose Metabolism but not of Insulin Secretion in Rat Pancreatic Islets

&
Pages 153-159 | Received 20 Jan 1997, Accepted 20 Jan 1997, Published online: 07 Jul 2009

References

  • Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 1965; 14: 619–633
  • Eisenbarth G. S. Type T diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986; 314: 1360–1368
  • Nakhooda A. F., Like A. A., Chappel C. I., Wei C. N., Marliss E. B. The spontaneously diabetic Wistar rat (the “BB” rat). Studies prior to and during development of the overt syndrome. Diabetologia 1978; 14: 199–207
  • Makino S., Kunimoto K., Muraoka Y., Mizushima Y., Katagiri K., Tochino Y. Breeding of a nonobese, diabetic strain of mice. Exp Anim 1980; 29: 1–13
  • Nerup J., Mandrup-Poulsen T., Mølvig J. The HLA-IDDM association: implications for etiology and pathogenesis of 1DDM. Diabetes Metab Rev 1987; 3: 779–802
  • Rabinovitch A. Roles of cytokines in IDDM pathogenesis and islet β-cell destruction. Diabetes Rev 1993; 1: 215–240
  • Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 1996; 39: 1005–1029
  • Mandrup-Poulsen T., Bendtzen K., Nerup J., Dinarello C. A., Svenson M., Nielsen J. H. Affinity-purified human inlerleukin 1 is cytotoxic to isolated islets of Langerhans. Diabetologia 1986; 29: 63–67
  • Bendtzen K., Mandrup-Poulsen T., Nerup J., Nielsen J. H., Dinarello C. A., Svenson M. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 1986; 232: 1545–1547
  • Sandler S., Andersson A., Hellerström C. Inhibitory effects of interleukin 1 on insulin secretion, insulin biosynthesis, and oxidative metabolism of isolated rat pancreatic islets. Endocrinology 1987; 121: 1424–1431
  • Sandler S., Bendtzen K., Borg L. A., Eizirik D. L., Strandell E., Welsh N. Studies on the mechanisms causing inhibition of insulin secretion in rat pancreatic islets exposed to human interleukin-1 beta indicate a perturbation in the mitochondrial function. Endocrinology 1989; 124: 1492–1501
  • Southern C., Schulster D., Green I. C. Inhibition of insulin secretion by interleukin-1 beta and tumour necrosis factor-alpha via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett 1990; 276: 42–44
  • Welsh N., Eizirik D. L., Bendtzen K., Sandler S. Interleukin-1 beta-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 1991; 129: 3167–3173
  • Corbett J. A., Lancaster J. R., Jr, Sweetland M. A., McDaniel M. L. Interleukin-1β-induced formation of EPR-detectable iron-nitrosyl complexes in islets of Langerhans. Role of nitric oxide in interleukin-1 beta-induced inhibition of insulin secretion. J Biol Chem 1991; 266: 21351–21354
  • Corbett J. A., Wang J. L., Hughes J. H., Wolf B. A., Sweetland M. A., Lancaster J. R., Jr, et al. Nitric oxide and cyclic GMP formation induced by interleukin I beta in islets of Langerhans. Evidence for an effector role of nitric oxide in islet dysfunction. Biochem J 1992; 287: 229–235
  • Sandler S., Sternesjö J. Interleukin 4 impairs rat pancreatic islet function in vitro by an action different to that of interleukin 1. Cytokine 1995; 7: 296–300
  • Doherty T. M., Kastelein R., Menon S., Andrade S., Coffman R. L. Modulation of murine macrophage function by IL-13. J Immunol 1993; 151: 7151–7160
  • Doyle A. G., Herbein G., Montaner L. J., Minty A. J., Caput D., Ferrara P., et al. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol 1994; 24: 1441–1445
  • Saura M., Martinez D. R., Minty A., Perez S. D., Lamas S. Interleukin-13 inhibits inducible nitric oxide synthase expression in human mesangial cells. Biochem J 1996; 313: 641–646
  • Cocks B. C, de W. M. R., Galizzi J. P., de V. J., Aversa G. IL-13 induces proliferation and differentiation of human B cells activated by the CD40 ligand. Int Immunol 1993; 5: 657–663
  • Krebs H. A., Henseleit K. Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seylers Z Physiol Chem 1932; 210: 33–66
  • Heding L. G. Determination of total serum insulin (1RI) in insulin-treated diabetic patients. Diabetologia 1972; 8: 260–266
  • Kissane J. M., Robins E. The fluorometric mesurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem 1958; 233: 184–188
  • Hinegardner R. T. An improved fluorometric assay for DNA. AnalBiochem 1971; 39: 197–201
  • Keen H., Field J. B., Pastan I. H. A simple method for in vivo metabolic studies using small volumes of tissue and medium. Metabolism 1963; 12: 143–147
  • Andersson A., Sandler S. Viability tests of cryopreserved endocrine pancreatic cells. Cryobiology 1983; 20: 161–168
  • Green L. C, Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982; 126: 131–138
  • Welsh N., Sandler S. Protective action by hemin against interleukin-1 beta induced inhibition of rat pancreatic islet function. Mol Cell Endocrinol 1994; 103: 109–114
  • Eizirik D. L., Sandler S., Welsh N., Cetkovic C. M., Nieman A., Geller D. A., et al. Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. J Clin Invest 1994; 93: 1968–1974
  • Rabinovitch A., Suarez-Pinzon W., Strynadka K., Schulz R., Lakey J. R., Warnock G. L., et al. Human pancreatic islet beta-cell destruction by cytokines is independent of nitric oxide production. J Clin Endocrinol Metab 1994; 79: 1058–1062
  • Dunger A., Cunningham J. M., Delaney C. A., Lowe I E., Green M. H., Bone A. J., et al. Tumor necrosis factor-alpha and interferon-gamma inhibit insulin secretion and cause DNA damage in unweaned-rat islets. Extent of nitric oxide involvement. Diabetes 1996; 45: 183–189
  • Lefort S., Vita N., Reeb R., Caput D., Ferrara P. IL-13 and IL-4 share signal transduction elements as well as receptor components in TF-1 cells. FEBS Lett 1995; 366: 122–126
  • Keegan A. D., Johnston J. A., Tortolani P. J., McRey-Nolds L. J., Kinzer C., O'Shea J. J., et al. ). Similar-ities and differences in signal transduction by interleukin 4 and interleukin 13: analysis of Janus kinase activation. Proc Natl Acad Sci USA 1995; 92: 7681–7685
  • Sakamoto O., Hashiyama M., Minty A., Ando M., Suda T. Interleukin-13 selectively suppresses the growth of human macrophage progenitors at the late stage. Blood 1995; 85: 3487–3493
  • Jacobsen S. E., Okkenhaug C., Veiby O. P., Caput D., Ferrara P., Minty A. Interleukin 13: novel role in direct regulation of proliferation and differentiation of primitive hematopoietic progenitor cells. J Exp Med 1994; 180: 75–82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.