33
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Locomotion and Chemotaxis of Lymphocytes

, &
Pages 55-72 | Received 23 Sep 1996, Published online: 07 Jul 2009

References

  • Haston W. S., Wilkinson P. C. Visual methods for measuring leukocyte locomotion. Methods Enzymol 1988; 162: 17–38
  • Wilkinson P. C. Micropore filter methods for leukocyte chemotaxis. Methods Enzymol 1988; 162: 38–50
  • Nelson R. D., Herron M. J. Agarose method for neutrophil chemotaxis. Methods Enzymol 1988; 162: 50–9
  • Zigmond S. H. Orientation chamber in chemotaxis. Methods Enzymol 1988; 162: 65–72
  • Wilkinson P. C. Denatured proteins as chemotac-tic agents: mitogens as lymphocyte locomotion activators. Methods Enzymol 1988; 162: 180–92
  • Wilkinson P. C. The locomotor capacity of human lymphocytes and its enhancement by cell growth. Immunology 1986; 57: 281–9
  • Haston W. S., Shields J. M., Wilkinson P. C. Lymphocyte locomotion and attachment on 2-dimensional surfaces and in 3-dimensional matrices. J Cell Biol 1982; 92: 747–52
  • Schor S. L., Allen T. D., Winn B. Lymphocyte migration into three-dimensional collagen matrices: a quantitative study. J Cell Biol 1983; 96: 1089–96
  • Wilkinson P. C. Cell locomotion and chemotaxis: basic concepts and methodological approaches. Methods: a companion to methods in Enzymology 1996; 10: 74–81
  • Wilkinson P. C. Assays of leukocyte locomotion and chemotaxis. J Immunol Methods 1997
  • Lewis W. H. Locomotion of lymphocytes. Bull Johns Hopkins Hosp 1931; 49: 29–36
  • Lewis W. H. The role of a superficial plasmagel layer in changes of form, locomotion and division of cells in tissue cultures. Arch Exp Zellforsch 1939; 23: 1–7
  • Lewis W. H., Webster L. T. Migration of lymphocytes in plasma cultures of humn lymph nodes. J Exp Med 1921; 33: 261–9
  • Haston W. S., Shields J. M. Contraction waves in lymphocyte locomotion. J Cell Sci 1984; 68: 227–41
  • McFarland W., Heilmann D. H., Moorhead J. F. Functional anatomy of the lymphocyte in immunological reactions in vitro. J Exp Med 1966; 124: 851–8
  • McCutcheon M. Studies on the locomotion of leucocytes III. The normal rate of locomotion of human lymphocytes in vitro. Amer J Physiol 1924; 69: 279–82
  • Biberfeld P. Uropod formation in phytohaemag-glutinin (PHA) stimulated lymphocytes. Exp Cell Res 1971; 66: 433–45
  • Parrott D. M. V., Wilkinson P. C. Lymphocyte locomotion and migration. Prog Allergy 1981; 28: 193–284
  • Haston W. S., Maggs A. F. Evidence for membrane differentiation in polarised leucocytes: the distribution of surface antigens analysed with Ig-gold labelling. J Cell Sci 1990; 95: 471–9
  • McKay D. A., Kusel J. R., Wilkinson P. C. Studies of chemotactic factor-induced polarity in human neutrophils. J Cell Sci 1991; 100: 473–9
  • Harris H. The movement of lymphocytes. Brit J Exp Path 1953; 34: 599–602
  • Harris H. Role of chemotaxis in inflammation. Physiol Rev 1954; 34: 529–62
  • Russell R. J., Wilkinson P. C, Sless F., Parrott D. M. V. Chemotaxis of lymphoblasts. Nature 1975; 256: 646–8
  • Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis, New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med 1973; 137: 387–410
  • Unanue E. R., Ault K. A., Karnovsky M. J. Ligand-induced movement of lymphocyte membrane macromolecules, IV. Stimulation of cell movement by anti-immunoglobulin and lack of relationship to capping. J Exp Med 1974; 139: 295–312
  • Schreiner G. F., Unanue E. R. Anti-immuno-globulin-triggered movement of lymphocytes –specificity and lack of evidence for directional migration. J Immunol 1975; 114: 809–14
  • Ward P. A., Unanue E. R., Goralnick S. J., Schreiner G. F. Chemotaxis of rat lymphocytes. J Immunol 1977; 119: 416–21
  • Wilkinson P. C, Parrott D. M. V., Russell R. J., Sless F. Antigen-induced locomotor responses in lymphocytes. J Exp Med 1977; 145: 1158–68
  • Komai-Koma M., Wilkinson P. C. Locomotor properties of human germinal centre B cells: activation by anti-CD40 and IL-4 allows chemoattraction by antiimmunoglobulin. Immunology 1997; 90: 23-a
  • Picker L. J., Butcher E C. Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol 1992; 10: 27–66
  • Mackay C. R. T cell memory: the connection between function, phenotype and migration pathways. Immunol Today 1991; 12: 189–92
  • Ager A., Mistry S. Interactions between lymphocytes and cultured high endothelial cells: an in vitro model of lymphocyte migration across high endothelial venule endothelium. Eur J Immunol 1988; 18: 1265–74
  • May M. J., Ager A. ICAM-1 independent transmigration of lymphocytes across high endothelium: differential up-regulation by interferon-γ, tumour necrosis factor-a and interleukin-1β. Eur J Immunol 1992; 22: 219–26
  • Haston W. S. A study of lymphocyte behaviour in cultures of fibroblast-like reticular cells. Cell Immunol 1979; 45: 74–84
  • Harris H. The stimulation of lymphocyte motility by cultured high endothelial cells and its inhibition by pertussis toxin. Int Immunol 1991; 3: 535–42
  • Harris H. Reversible stimulation of lymphocyte motility by cultured high endothelial cells: mediation by L-selectin. Immunology 1995; 84: 47–54
  • Harris H., Jolley C., Miller N. G. A light-scattering assay for lymphocyte shape and its application to T and B lymphocyte responses to cultured high-walled endothelial cells. J Immunol Methods 1996; 192: 179–85
  • Baumhueter S., Singer M. S., Henzel W., Hemme-Rich S., Renz M., Rosen S. D., Lasky L. A. Binding of L-selection to the vascular sialomucin, CD34. Science 1993; 262: 436–8
  • Dustin M. L., Springer T. A. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu Rev Immunol 1991; 9: 27–66
  • Sanders M. E., Makgoba M. W., Sharrow S. O., Step-Hany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD3, LFA-I) and three other molecules (UCHL1, CDw29: and PgP-1) and have enhanced gamma interferon production. J Immunol 1988; 140: 1401–7
  • Berlin C, Bargatze R. F., Campbell J. J., von Andrian V. H., Szabo M. C, Hasslen S. R., Nelson R. D., Berg E. L., Erlandsen S. L., Butcher E. C. Alpha-4 integrins mediate lymphocyte attachment and rolling under physiological flow. Cell 1995; 80: 413–22
  • McGregor D. D., Logie P. S. The mediator of cellular immunity. VII. Localization of sensitized lymphocytes in inflammatory exudates. J Exp Med 1974; 139: 1415–30
  • North R. J. Cellular mediators of anti-Listeria immunity as an enlarged population of short-lived replicating T cells. J Exp Med 1973; 138: 342–55
  • Asherson G. L., Allwood G. G., Mayhew B. Contact sensitivity in the mouse. XI. Movement of T blasts in the draining lymph nodes to sites of inflammation. Immunology 1973; 25: 485–94
  • MacKay C. R., Marston W. L., Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 1990; 171: 810–7
  • Pitzalis C, Kingsley G., Haskard D., Panayi G. The preferential accumulation of helper-inducer T lymphocytes in inflammatory lesions: evidence for regulation by selective endothelial and homotypic adhesion. Eur J Immunol 1988; 18: 1397–404
  • Wilkinson P. C., Higgins A. OKT3-activated locomotion of human blood lymphocytes: a phenomenon requiring contact of T cells with Fc receptor-bearing cells. Immunology 1987; 60: 445–51
  • Wilkinson P. C., Newman I. Identification of interleukin-8 as a locomotor attractant for activated human lymphocytes in mononuclear cell cultures with anti-CD3 or purified protein derivative of. Mycobacterium tuberculosis. J Immunol 1992; 149: 2689–94
  • Newman I., Wilkinson P. C. The bacterial superantigen Staphylococcal enterotoxin B stimulates lymphocyte locomotion during culture in vitro. Immunology 1996; 87: 428–33
  • Wilkinson P. C., Higgins A. Cyclosporin A inhibits mitogen-activated but not phorbol-ester-activated locomotion of human lymphocytes. Immunology 1987; 61: 311–6
  • Wilkinson P. C., Watson E. A. FK506 and pertussis toxin distinguish growth-induced locomotor activation from attractant-stimulated locomotion in human blood lymphocytes. Immunology 1990; 71: 417–22
  • Newman I., Wilkinson P C. Locomotor responses of human CD45 lymphocyte subsets: preferential locomotion of CD45RO+ lymphocytes in response to attractants and mitogens. Immunology 1993; 78: 92–8
  • Al-Mughales J., Blyth T. H., Hunter J. A., Wilkinson P. C. The chemoattractant activity of rheumatoid synovial fluid for human lymphocytes is due to multiple cytokines. Clin Exp Immunol 1996; 105: 230–6
  • Werdelin O., Braendstrup O., Pedersen E. Macrophage-lymphocyte clusters in the immune response to soluble protein antigen in vitro. I. Role of lymphocytes and macrophages in cluster formation. J Exp Med 1974; 140: 1245–59
  • Nielsen M. H., Jensen H., Braendstrup O., Werdelin O. Macrophage-lymphocyte clusters in the immune response to soluble antigen in vitro. II. Ultrastructure of clusters formed during the early response. J Exp Med 1974; 140: 1260–72
  • Negulescu P. A., Krasieva T. B., Khan A., Kersch-Baum H. H., Cahalan M. D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 1996; 4: 421–30
  • Wilkinson P. C. Relation between locomotion, chemotaxis and clustering of immune cells. Immunology 1990; 69: 127–33
  • Sharp J. A., Burwell R. G. Interaction “peripolesis” of macrophages and lymphocytes after skin homografting or challenge with soluble antigen. Nature 1960; 188: 474–5
  • del Pozo M. A., Sanchez-Mateos P., Sanchez-Madrid F. Cellular polarization induced by chemokines: a mechanism for leukocyte recruitment?. Immunol Today 1996; 17: 127–31
  • Kornfeld H., Berman J. S., Beer D. J., Center D. M. Induction of human T lymphocyte motility by interleukin-2. J Immunol 1985; 134: 3887–90
  • Wilkinson P. C., Newman I. Chemoattractant activity of IL-2 for human lymphocytes: a requirement for the IL-2 receptor β-chain. Immunology 1994; 82: 134–9
  • Wilkinson P. C., Liew F. Y. Chemoattraction of human blood T lymphocytes by interleukin-15. J Exp Med 1995; 181: 1255–9
  • McLnnes I. B., Al-Mughales J., Field M., Leung B., Huang F-P., Dixon R., Sturrock R. D., Wilkinson P. C., Liew F. Y. The role of interleukin-15 in T cell migration and activation in rheumatoid'arthritis. Nature Med 1996; 2: 175–82
  • Tagaya Y., Bamford R. N., DeFillipis A. P., Wald-Mann T. A. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 1996; 4: 329–36
  • Cruikshank W., Center D. M. Modulation of lymphocyte migration by human lymphokines. II. Production of a lymphotactic factor (LCF). J Immunol 1982; 128: 2569–74
  • Center D. M., Kornfeld H., Cruikshank W. W. Interleukin 16 and its function as a CD4 ligand. Immunol Today 1996; 17: 476–81
  • Kornfeld H., Cruikshank W. W., Pyle S. W., Berman J. S., Center D. M. Lymphocyte activation by HIV-1 envelope glycoprotein. Nature 1988; 355: 445–8
  • Larsen C. G., Anderson A. O., Appella E., Oppen-Heim J. J., Matsushima K. (1989). Neutrophil activating protein (NAP-1) is also chemotactic for T lymphocytes. Science, 243: 1464–6
  • Taub D. D., Lloyd A. R., Conlon K., Wang J. M., Ortaldo J. R., Harada A., Matsushima K., Kelvin D. J., Oppenheim J. J. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 1993; 117: 1809–14
  • Sarris A. H., Esgleyesribet T., Crow M., Broxmeyer H. E., Karasavas N., Pugh W., Grossman D., Deis-Seroth A., Duvic M. Cytokine loops involving interferon-gamma and IP-10: a cytokine chemotactic for CD4(+) lymphocytes –an explanation for the epilder-motropism of cutaneous T-cell lymphoma. Blood, 86: 651–8
  • Proost P., De Wolf-Peeters C, Conings R., Opde-Nakker G., Billiau A., van Damme J. Identification of a novel granulocyte protein (GCP-2) from human tumor cells. J Immunol 1993; 150: 1000–10
  • Schall T. J., Bacon K., Camp R. D. R., Kaspari J. W., Goeddel D. V. Human macrophage inflammatory protein α (MIP-1α) and MIP-1β chemokines attract distinct populations of lymphocytes. J Exp Med 1993; 177: 1821–5
  • Taub D. D., Conlon K., Lloyd A. R., Oppenheim J. J., Kelvin D. J. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-la and MIP-1β. Science 1993; 260: 355–8
  • Schall T. J., Bacon K., Toy K., Goeddel D. V. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990; 347: 669–71
  • Taub D. D., Proost P., Murphy W. J., Anver M., Longo D. L., van Damme J., Oppenheim J. J. Monocyte chemoattractant protein-1 (MCP-1), -2, and -3 are chemotactic for human T lymphocytes. J Clin Invest 1995; 95: 1370–6
  • Carr M. W., Roth S. J., Luther E., Rose S. S., Springer T. A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 1994; 91: 3652–6
  • Loetscher P., Selitz M., Clark-Lewis I., Baggiolini M., Moser B. Monocyte chemotactic proteins MCP-1, MCP-2 and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. FASEB J 1994; 8: 1055–60
  • Loetscher P., Seitz M., Baggiolini M., Moser B. Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J Exp Med 1996; 184: 569–77
  • Tanaka Y., Adams D. H., Hubscher S., Hirano H., Siebenlist U., Shaw S. T cell adhesion induced by proteoglycan-immobilized cytokine MIP-1/3. Nature 1993; 361: 79–82
  • Roth S. J., Carr M. W., Rose S. S., Springer T. A. Characterization of transendothelial chemo-taxis of T lymphocytes. J Immunol Methods 1995; 188: 97–116
  • Mackay C. R. Chemokine receptors and T cell chemotaxis. J Exp Med 1996; 184: 799–802
  • Bacon K. B., Flores-Romo L., Life P. F., Taub D. D., Premack B. A., Arkinstall S. J., Wells T. N. C, Schall T. J., Power C. A. IL-8-induced signal transduction in T lymphocytes involves receptor-mediated activation of phospholipases C and D. J Immunol 1995; 154: 3654–66
  • Loetscher M. L., Gerber B., Loetscher P., Jones S. A., Piali L., Clark-Lewis I., Baggiolini M., Moser B. Chemokine receptor specific for IP-10 amd Mig: structure, function and expression in activated T lymphocytes. J Exp Med 1996; 184: 963–9
  • Kelner G. S., Kennedy J., Bacon K. B., Kleyensteu-Ber S., Largaespada D. A., Jenkins N. A., Copeland N. G., Bazan J. F., Moore K. W., Schall T. J., Zlot-Nik A. Lymphotactin: a cytokine that represents a new class of chemokine. Science 1994; 266: 1395–9
  • Bleul C., Cfuhlbrigge R. C., Casanovas J. M., Aiuti A., Springer T. A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996; 184: 1101–9
  • Oberlin E., Amara A., Bacherlie F., Bessia C. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T cell line-adapted HIV-1. Nature 1996; 382: 833–5
  • Bleul C. C, Farzan M., Choe H., Parolin C, Clark-Lewis I., Sodroski J., Springer T. A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTRE/fusin and blocks HIV-1 entry. Nature 1996; 382: 829–33
  • Brennan F. M., Zachariae C. O. C, Chantry D., Larsen C. G., Turner M., Maini R. V., Matsushima K., Feldmann M. Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells. Eur J Immunol 1990; 20: 2141–4
  • Strieter R. M., Koch A. E., Antony V. B., Fick R. B., Standiford T. J., Kunkel S. J. The immunopa-fhology of chemotactic chemokines: the role of interleukin-8 and monocyte chemoattractant protein-1. J Lab Clin Med 1994; 123: 183–97
  • Cook D. N., Beck M. A., Coffman T. M., Kirby S. L., Sheridan J. F., Pragnell I. B., Smithies O. Macrophage inflammatory protein (MlP)-la required for normal inflammatory response to viral infection. Science 1995; 269: 1583–5
  • Woodruff J. F. Viral myocarditis. A review. Am J Path 1980; 101: 425–83
  • Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C, Maddon P. J., Koup R. A., Moore J. P., Paxton W. A. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73
  • Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C, Schall T. J., Littman D. R., Landau N. R. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381: 661–6
  • Graham G. J., Wilkinson P. C, Nibbs R. J. B., Lowe S., Kolset S. O., Parker A., Freshney M. G., Tsang ML-S., Pragnell I. B. Uncoupling of stem cell inhibition from monocyte chemoattraction in MlP-la by mutagenesis of the proteoglycan binding site. EMBO J 1996; 15: 6506–15
  • Huffnagle G. B., Strieter R. M., Standiford T. J., McDonald R. A., Burdick M. D., Kunkel S. L., Toews G. B. The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4(+) T cells during a pulmonary Cryptococcus neoformans infection. J Immunol 1995; 155: 4790–7
  • Bellini T., Dallocchio F., Degani D., Spisani S., Gavi-Oli R., Traniello S. Myelin basic protein inhibits formyl peptide-induced chemotaxis in human neutrophils. Biochem Biophys Res Commun 1986; 141: 524–7
  • Pinegin B. V., Oklov E. G., Saidov M. Z., Boyko A. N., Demina T. L. Peripheral blood leukocytes from multiple sclerosis patients are coated with factors inhibiting their chemotaxis in the presence of myelin basic protein. Immunol Letters 1993; 38: 131–6
  • Keller H-U., Naef A., Zimmermann A. Effects of colchicine, vinblastine and nocodazole on polarity, motility, chemotaxis and cAMP levels of human polymorphonuclear leukocytes. Exp Cell Res 1984; 153: 173–85
  • Keller H-U., Niggli V. Colchicine-induced stimulation of PMN motility related to cytoskeletal changes in actin, a-actinin and myosin. Cell Motil Cytoskel 1993; 25: 10–18
  • Keller H-U., Bessis M. Migration and chemotaxis of anucleate cytoplasmic leucocyte fragments. Nature 1975; 258: 723–4
  • Malawista S. E., De Boisfleury Chevance A. The cytokineplast: purified, stable, and functional motile machinery from human blood polymorphonuclear leukocytes. J Cell Biol 1982; 95: 960–73
  • Southern C, Wilkinson P. C, Thorp K. M., Henderson L. K., Nemec M., Matthews N. Inhibition of protein kinase C results in a switch from a non-motile to a motile phenotype in diverse human lymphocyte populations. Immunology 1995; 84: 326–32
  • Trachsel S., Keller H-U. Selective responses (actin polymerization, shape changes, locomotion, pinocy-tosis) to the PKC inhibitor RO 31-8220 suggest that PKC discriminately regulates functions of human blood lymphocytes. J Leuk Biol 1995; 57: 587–91
  • Wilkinson P. C, Lackie J. M., Haston W. S., Islam L. N. Effects of phorbol esters on shape and locomotion of human blood lymphocytes. J Cell Sci. 1988; 90: 645–55
  • Thorp K. M., Verschueren H., De Baetselier P., Southern C., Matthews N. Protein kinase C iso-type expression and regulation of lymphoid cell motility. Immunology 1996; 87: 434–8
  • Nieto M., del Pozo M. A., Sanchez-Madrid F. Interleukin-15 induces adhesion receptor redistribution in T lymphocytes. Eur J Immunol 1996; 26: 1302–7
  • Campbell J. I, Qin S., Bacon K. B., Mackay C. R., Butcher E. C. Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. J Cell Biol 1996; 143: 255–66
  • Lloyd A. R., Oppenheim J. J., Kelvin D. J., Taub D. D. Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J Immunol 1996; 156: 932–8
  • Sundqvist K-G., Otteskog P. Anchorage and lymphocyte function: collagen and the maintenance of motile shape in T cells. Immunology 1986; 58: 365–9
  • Arencibia I., Sundqvist K-G. Collagen receptor on T lymphocytes and the control of lymphocyte motility. Eur J Immunol 1989; 19: 929–34
  • MacLennan I. C. M., Liu Y. J., Oldfield S., Zhang J., Lane P. J. L. The evolution of B cell clones. Curr Top Microbiol Immunol 1990; 159: 37–63
  • MacLennan I. C. M. Germinal Centers. Annu Rev Immunol 1994; 12: 117–39
  • Liu Y. J., Johnson G. D., Gordon J., MacLennan I. C. M. Germinal centres in T-cell-dependent antibody responses. Immunol Today 1992; 13: 17–21
  • Gray D., Siepmann K., van Essen D., Poudrier J., Wykes M., Jainandunsing S., Bergthorsdottir S., Dullforce P. B-T lymphocyte interactions in the generation and survival of memory cells. Immunol Rev 1996; 150: 45–61
  • Wilkinson P. C., Islam L. N. Recombinant IL-4 and IFN-y activate locomotor capacity in human B lymphocytes. Immunology 1989; 67: 237–43
  • Clinchy B., Elenstrom C, Severinson E., Moller G. T and B cell collaboration: induction of motility in small, resting B cells by interleukin 4. Eur J Immunol 1991; 21: 1445–51
  • Gordon J., Guy G., Walker L. Autocrine models of B lymphocyte growth. I. Role of cell contact and soluble factors in T-independent B cell responses. Immunology 1985; 56: 329–35
  • Holder M. J., Liu Y-J., Defrance T., Flores-Romo L., MacLennan I. C. M., Gordon J. Growth factor requirements for the stimulation of germinal center B cells: evidence for an IL-2-dependent pathway of development. Int Immunol 1991; 3: 1243–51
  • Komai-Koma M., Liew F. Y., Wilkinson P. C. Interactions between IL-4, anti-CD40: and antiimmunoglobulin as activators of locomotion of human B cells. J Immunol 1995; 155: 1110–6
  • Liu Y-J., Joshua D. E., Williams G. T., Smith C. A., Gordon J., MacLennan I. C. M. Mechanisms of antigen-driven selection in germinal centres. Nature 1989; 342: 929–31
  • Clinchy B., Bjorck P., Paulie S., Moller G. Interleukin-10 inhibits motility in murine and human B lymphocytes. Immunology 1994; 82: 376–82
  • Clinchy B., Elenstrom C., Moller G. The effect of T cell-derived cytokines on B cell motility in vitro. Cell Immunol 1993; 146: 62–70
  • Komai-Koma M., Wilkinson P. C. Chemotaxis of human B lymphocytes to anti IgD. Immunology 1996; 88: 600–3
  • Burton G. F., Kupp L. I., McNalley E. C., Tew J. G. Follicular dendritic cells and B cell chemotaxis. Eur J Immunol 1995; 25: 1105–8
  • Kupp L. I., Kosco M. H., Schenkein H. A., Tew J. G. Chemotaxis of germinal centre B cells in response to C5a. Eur J Immunol 1991; 21: 2697–2701
  • Jarvis S. C., Snyderman R., Cohen H. J. Human lymphocyte motility: normal characteristics and anomalous behavior of chronic lymphocytic leukemia cells. Blood 1976; 48: 717–29
  • Wilkinson P. C, Islam L. N., Sinclair D., Dagg J. H. The defect of lymphocyte locomotion in chronic lymphocytic leukaemia: studies of polarization and growth-dependent locomotion. Clin Exp Immunol 1988; 71: 497–501
  • Islam L. N., Wilkinson P. C. Restoration with phorbol ester of a locomotor defect in human leukaemic lymphocytes: a visual study of chronic lymphocytic leukaemia cells. Invasion Metastasis 1992; 12: 47–56
  • Verschueren H., van der Taelen I., Dewit J., De Braekeler J., De Baetselier P. Metastatic competence of BW5147 T-lymphoma cell lines is correlated with in vivo invasiveness, motility and F-actin content, /. Leuk Biol 1994; 55: 552–6
  • Bottazzi B., Introna M., Allavena P., Villa A., Mantovani A. In vitro migration of human large granular lymphocytes. J Immunol 1985; 134: 2316–21
  • Natuk R. J., Welsh R. M. Chemotactic effect of human recombinant interleukin 2 on mouse activated large granular lymphocytes. J Immunol 1987; 139: 2737–43
  • Maghazachi A. A., Al-Aoukaty A., Schall T. J. C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. J Immunol 1994; 153: 4969–77
  • Sebok K. D., Woodside A., Al-Aoukaty A., Ho A. D., Gluck S., Maghazachi A. A. IL-8 induces the locomotion of human IL-2-activated natural killer cells: involvement of a guanine nucleotide binding (G0) protein. J Immunol 1993; 150: 1524–34
  • Komai-Koma M., Wilkinson P C. TGF-,8 stimulates, but IFN-y inhibits, growth-related activation of locomotion of human B cells. J. Immunol. 1997; 158

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.