25
Views
0
CrossRef citations to date
0
Altmetric
Original Article

T Lymphocyte Activation in Myasthenic Thymoma

, &
Pages 173-182 | Received 07 Aug 1997, Accepted 26 Dec 1997, Published online: 07 Jul 2009

References

  • Fujii Y., Monden Y., Nakahara K., et al. Antibody to acetylcholine receptor in myasthenia gravis: Production by lymphocytes from thymus or thymoma. Neurology 1984; 34: 1182–86
  • Namba T., Brunner N. G., Grob D. Myasthenia gravis in patients with thymoma, with particular reference to onset after thymectomy. Medicine 1978; 57: 411–33
  • Monden Y., Nakahara K., Kogatani K., et al. Myasthenia gravis with thymoma: analysis of and postoperative prognosis for 65 patients with thymomatous myasthenia gravis. Ann. Thorac. Surg. 1984; 38: 46–52
  • Paletto A., Maggi G. Thymectomy in the treatment of myasthenia gravis: results in 320 patients. Int. Surg. 1982; 67: 13
  • Evoli A., Batocchi A. P., Provenzano C., et al. Thymectomy in the treatment of myasthenia gravis: report of 247 patients. J. Neurol. 1988; 235: 272
  • Takahashi K., Monden Y., Saito S., et al. Myasthenia gravis induces the activation and maturation of lymphocytes in thymoma. J. Clin. Immunol. 1996; 16: 190–97
  • Brown G., Greaves M. F., Lister T. A., et al. Expression of human T and B lymphocyte cell-surface markers on leukemic cells. Lancet 1974; 2: 753–55
  • Levine G. D., Polliack A. The T-cell nature of lymphocytes in two human epithelial thymomas: A comparative immunogenic scanning and transmission electron microscopic study. Clin. Immunol, Immunopathol. 1975; 4: 199–208
  • Crossman J., Deegan M. A., Schnitzer B. Thymoma: An immunologic and electron microscopic study. Cancer 1978; 41: 2183–91
  • Lauriola L., Maggiano N., Marino M., et al. Human thymoma: Immunologic characteristics of the lymphocytic component. Cancer 1981; 48: 1992–95
  • Christadoss P., Lindstorm J. M., Talal N., et al. Immune response gene control of lymphocyte proliferation induced by acetylcholine receptor. Specific helper factor derived from lymphocytes of myasthenic mice. J. Immunol. 1986; 137: 1845–49
  • Gordon J., Millsum M. J., Guy G. R., et al. Synergistic interaction between interleukin 4 and anti-Bp50 (CDw40) revealed in novel B cell restimulation assay. Eur. J. Immunol. 1987; 17: 1535–38
  • Jabara H. H., Fu S. M., Geha R. S., et al. CD40 and IgE: synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B cells. J. Exp. Med. 1990; 172: 1861–64
  • Gascon H., Gauchat J. F., Aversa G., et al. Anti-CD40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce lgG4 and IgE switching in purified human B cells via different signaling pathways. J. Immunol. 1991; 147: 8–13
  • Zhang K., Clark E. A., Saxon A. CD40 stimulation provides an IFN independent and IL-4-dependent differentiation signal directly to human B cells for IgE production. J. Immunol. 1991; 146: 1836–42
  • Sahapira S. K., Vercelli E., Jabara H. H., et al. Molecular analysis of the induction of immunoglobulin E synthesis in human B cells by interleukin 4 and engagement of CD40 antigen. J. Exp. Med. 1992; 175: 289–92
  • Defrance T., Vanbervliet B., Briere B. F., et al. Interleukin 10 and transfection growth factor b cooperate to induce anti-CD40-activated naive human B cell to secrete immunoglobulin A. J. Exp. Med. 1992; 175: 671–82
  • Lozte M. T., Grimm E. A., Maunder A., et al. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured with T-cell growth factor. Cancer Res. 1981; 41: 4420–25
  • Toribio M. I., Landazuri M. O., Lopez-Botet M. Induction of natural killer-like cytotoxicity in cultured human thymocytes. Eur. J. Immunol. 1983; 13: 964–69
  • Perlo V. P., Poskanzer D. C., Schwab R. S., et al. Myasthenia gravis: Evaluation of treatment in 1335 patients. Neurology 1996; 16: 431–39
  • Berrih S., Morel E., Gaud C., et al. Anti-AChR antibodies, thymic histology, and T cell subsets in Myasthenia Gravis. Neurology 1984; 34: 66–71
  • Kato K., Yamada T., Onda H., et al. Purification and characterization of recombinant human interleukin-2 produced in Escherichia coli. Biochem. Biophys. Res. 1985; 31: 692–99
  • Takahashi K., Sone S., Kimura S., et al. Phenotypes and lymphokine-activated killer activity of pleural cavity lymphocytes of lung cancer patients without malignant effusion. Chest 1993; 103: 1732–38
  • Takahashi K., Sone S., Saito S., et al. Granulocyte-macrophage colony-stimulating factor augments lymphokine-activated killer activity from pleural cavity mononuclear cells of lung cancer patients without malignant effusion. Jpn. J. Cancer Res. 1995; 86: 861–66
  • Torten M., Sidell N., Golub S. H. Interleukin 2 and stimulator lymphoblastoid cells will induced human thymocytes to bind and kill K.562 targets. J. Exp. Med. 1982; 156: 1545–50
  • Lopez-Botet M., Moretta L. Functional characterization of human thymocytes: A limiting dilution analysis of precursors with proliferative and cytolytic activities. J. Immunol. 1985; 134: 2299–304
  • Blue M., Levine H., Daley J. F., et al. Development of natural killer cells in human thymocytes culture: regulation by accessory cells. Eur. J. Immunol. 1987; 17: 669–73
  • Lanier L. L., Benike C. J., Phillips J. H., et al. Recombinant interleukin 2 enhanced natural killer cell-mediated cytotoxicity in human lymphocyte subpopulations expressing the Leu 7 and Leu 11 antigens. J. Immunol. 1985; 134: 794–801
  • Itoh K., Tilden A. B., Kumagai K., et al. Leu-11 + lymphocytes with natural killer (NK) activity are precursors of recombinant interleukin 2 (rIL-2)-induced activated killer (AK) cells. J. Immunol. 1985; 134: 802–7
  • Ferradini L., Miescher S., Stoeck M., et al. Cytotoxic potential despite impaired activation pathway in T lymphocytes infiltrating nasopharyngeal carcinoma. Int. J. Cancer 1991; 47: 362–70
  • Ioannides C. G., Plastsoucas C D, Rashed S., et al. Tumor cytolysis by lymphocytes infiltrating ovarian malignant ascites. Cancer Res. 1991; 51: 4257–65
  • Cohen-Kaminsky S., Levasseur P., Binet J. P., et al. Evidence of enhanced recombinant interleukin-2 sensitivity in thymic lymphocytes from patients with myasthenia gravis: possible role in autoimmune pathogenesis. J. Neuroimmunol. 1989; 24: 75–85
  • Cohen-Kaminsky S., Gaud C., Morel E., et al. High recombinant interleukin-2 sensitivity of peripheral blood lymphocytes from patients with myasthenia gravis: correlations with clinical parameters. J. Autoimmunity 1989; 2: 241–58
  • Loh R. K., Jabara H. H., Geha R. S. Mechanisms of inhibition of IgE synthesis by nedocromil sodium: nedo-cromil inhibits deletional switch recombination in human B cells. J. Allergy Clin. Immunol. 1996; 97: 1141–50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.