23
Views
13
CrossRef citations to date
0
Altmetric
Original Article

The APC1 Concept of Type I Diabetes

&
Pages 179-184 | Received 21 Apr 1997, Accepted 09 Sep 1997, Published online: 07 Jul 2009

References

  • Kolb-Bachofen V., Kolb H. A role for macrophages in the pathogenesis of type I diabetes. Autoimmunity 1989; 3: 145–155
  • Leiter E. H., Prochazka M., Coleman D. L. Animal model of human disease. The non-obese diabetic (NOD) mouse. Amer J Pathol 1987; 128: 380–391
  • Scott J. The spontaneously diabetic BB rat: sites of the defects leading to autoimmunity and diabetes mellitus. Curr Top Microbiol Immunol 1990; 156: 1–14
  • Gepts W. Pathologic anatomy of pancreas in juvenile diabetes mellitus. Diabetes 1965; 14: 619–633
  • Oschilewski U., Kiesel U., Kolb H. Administration of silica prevents diabetes in BB rats. Diabetes 1985; 34: 197–202
  • Charlton B., Bacelj B. A., Mandel T. E. Administration of silica particals or anti-Lyt2 antibodies prevents, β-cell destruction in NOD mice given cyclophosphamide. Diabetes 1988; 37: 930–936
  • Hahnenberg H., Kolb-Bachofen V., Kantwerk-Funke G., Kolb H. Macrophage infiltration precedes and its prerequisite for lymphocytic insulitis in pancreatic islets of prediabetic BB rats. Diabetologia 1989; 32: 126–129
  • Lee K. U., Amano K., Yoon J. W. Evidence for initial involvement of macrophages in development of insulitis in NOD mice. Diabetes 1989; 37: 989–991
  • Hutchings P., Rosen H., O'Reilly L., Simpson E., Gordon S., Cooke A. Transfer of diabetes in mice is prevented by blockade of adhesion-promoting receptor on macrophages. Nature 1990; 348: 639–642
  • Voorby H. A.M, Jeucken P. H. M., Kabel P. J., De-Haan M., Drexhage H. A. Dendritic cells and scavenger macrophages in the pancreatic islets of prediabetic BB rats. Diabetes 1989; 38: 1623–1629
  • Jansen A., Homo-Delarche F., Hooijkaas H., Leenen P. J., Dardenne M., Drexhage H. A. Immunohisto-chemical characterization of monocyte-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes 1994; 43: 667–675
  • Lo D., Reilly C. R., Scott B., Liblau R., McDevitt H. O., Burkly L. C. Antigen-presenting cells in adoptively tranferred and spontaneous autoimmune diabetes. Eur J Immunol 1993; 23: 1693–1698
  • Ziegler A. G., Erhard J., Lampeter E. F., Nagelkerken L. M., Standi E. Involvement of dendritic cells in early insulitis of BB rats. J Autoimmun 1992; 5: 571–579
  • Jarpe A. J., Hickman M. R., Anderson J. T., Winter W. E., Peck A. B. Flow cytometric numeration of mononuklear cell populations infiltrating the islets of Langerhans in prediabetic NOD mice: development of a model of autoimmune insulitis for type I diabetes. Reg Immunol 1991; 3: 305–317
  • DˆAndrea A., Rengaraju M., Valiante N. M., Chehimi J., Kubin M., Aste-Amezaga M., Chan S. H., Kobayashi M., Young D., Nickbarg E., Chizzonite R., Wolf S. F., Trinchieri G. Production of natural killer cell stimulatory factor (NKSF/IL-12) by peripheral blood mononuklear cells. J Exp Med 1992; 176: 1387–1392
  • Georgiou H. M., Constantinou D., Mandel T. E. Prevention of autoimmunity in nonobese diabetic (NOD) mice by neonatal transfer of allogenic thymic macrophages. Autoimmunity 1995; 21: 89–97
  • Shimada A., Takei I., Mauyama T., Kasuga A., Kasa-Tani T., Watanabe K., Asaba Y., Ishii T., Tadakuma T., Habu S. Acceleration of diabetes in young NOD mice with peritoneal macrophages. Diabetes Res Clin Pract 1994; 24: 69–76
  • Boyd R. L., Hugo P. Towards an intergtated view of thymopoiesis. Immunol Today 1991; 12: 71–79
  • Serreze D. V. Autoimmune diabetes results from genetic defects manifest by antigen presenting cell. FASEB J 1993; 7: 1092–1096
  • Todd J. A., Aitman T. J., Cornall R. J., Gosh S., Hall J. R. S., Hearne C. M., Knight A. M., Love J. M., Mc-Aleer M. A., Prins J. B., Rodrigues N., Lathorp M., Pres-Sey A., DeLarto N. H., Peterson L. B., Wicker L. S. Genetic analysis of autoimmune type I diabetes mellitus in mice. Nature 1991; 351: 542–547
  • Davies J. L., Kawaguchi Y, Bennett S. T., Copemann J. B., Cordell H. J., Pritchard L. E., Reed P. W., Gough S. C. L., Jenkins S. C, Palmer S. M., Balfour K. M., Rowe B. R., Farrall M., Barnett A. H., Bain S. C., Todd J. A. A genome-wide search for human type I diabetes susceptible genes. Nature 1994; 371: 130–136
  • Todd J. A., Bain S. C. A practical approach to identification of susceptible genes for IDDM. Diabetes 1992; 41: 1029–1034
  • Rothe H., Jenkins N. A., Copeland N. G., Kolb H. Active stage of autoimmune diabetes is associated with the expression of a novel cytokine, IGIF, which is located near ldd2. J Clin Invest 1997; 99: 469–474
  • Jenkins N. A., Rothe H., Gilbert D. J., Copeland N. G., Kolb H. Mapping of the gene for inducible NO symthase of mouse macrophages to chromosome 11 close to evi-2, nu and Idd-4. Genomics 1994; 19: 402–405
  • Ballantyne C. M., Kozak C. A., O'Brien W. E., Bea-Udet A. L. Assignment of the gene for intercellular adhesion molecul-1 (ICAM-1) to proximal mouse chromosome 9. Genomics 1991; 9: 547–550
  • Russel P. J., Steinberg A. D. Sudies of peritoneal macrophage function in mice with systemic lupus erythematosus: depressed phagocytosis of opsonized sheep erythrocytes in vitro. Clin Immunol Immunophathol 1983; 27: 387–402
  • Luqmani R., Sheeran T., Robinson M., Richardson K., Winkels J., Emery P. Sytemic cytokine measurements: their role in monitoring the response to therapy in patients with rheumatois arthritis. Clin Exp Rheumatol 1994; 12: 503–508
  • Serreze D. V., Gaskin H. R., Leiter E. H. Defects in differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol 1993; 150: 2534–2543
  • Jacob C. O., Aiso S., Michie S. A. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): Similiarities between TNFo? and interleukin 1. Immunology 1990; 87: 968–972
  • Lapchak P. H., Guilbert L. J., Rabinovitch A. Tumor necrosis factor production is deficient in diabetes-prone BB rats and can be corrected by complete Fre-unďs adjuvant: A possible immunoregulatory role of tumor necrosis factor in the prevention of diabetes. Clin Immunol. Immunopathol 1992; 65: 129–134
  • Barel D., Brennan D. C., Jevnikar A. M. Enhanced tumor necrosis factor in anti-CD3 antibody stimulated diabetic NOD mice: Modulation by PGE1 and dietary lipid. Autoimmunity 1992; 13: 141–149
  • Rothe H., Fehsel 'K., Kolb H. A macrophage defect in diabetes prone BB rats. Diabetologia 1990; 33: 573–575
  • Rothe H., Ongeren C., Martin S., Kolb H. Abnormal TNFa production in diabetes-prone BB rats: enhanced TNFa expression and defective PGE2 feedback inhibition. Immunology 1994; 81: 407–413
  • Rothe H., Öngören C, Rösen P., Kolb H. Genetic analysis of aberrant TNF α production in prediabetic BB rats. Transplantation Proceedings 1993; 25: 2833
  • Mosmann T. R., Cherwinski I. I., Bond M. VV., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 185: 2348–2357
  • Mosmann T. R., Coffman R. L. Thl and Th2 cells different patterns of lymphokine secretion to different functional properties. Annual Rev Immunol 1989; 7: 145–173
  • Shehadeh N. N., LaRosa L., Lafferty K. J. Altered cytokine activity in adjuvant inhibition of autoimmune diabetes. J Autoimmun 1993; 6: 291–300
  • Rothe H., Faust H., Schade U., Kleemann R., Bosse G., Hibino T., Martin S., Kolb H. Acceleration of diabetes development in NOD mice by cyclophosphamide is associated with a shift from IL-4 to IFN-gamma production and with enhanced expression of inducible NO-synthase in pancreatic lesions. Diabetologia 1994; 37: 1154–1158
  • Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Diabetes 1994; 43: 613–621
  • Katz J. D., Benoist C., Mathis D. T helper cell subsets in insulin-dependent diabetes. Science 1995; 268: 1185–1188
  • Healey D., Ozegbe P., Arden S., Chandler P., Hutch-Ton J., Cooke A. In vivo and in vitro specificity of CD4+ Thl and Th2 cells derived from the spleens of diabetic NOD mice. J. Clin Invest 1995; 95: 2979–2985
  • Hancock W. W., Polanski M., Zhang J., Blogg N., Weiner H. L. Suppression of insulitis in non-obese diabetic (NOD) mice by oral insulin administration is associated with selective expression of interleukin-4 and-10, transforming growth factor, an prostaglandine-E. Am J Pathol 1995; 147: 1193–1199
  • Okamura H., Tsutsui H., Komatsu T., Yutsudo M., Ha-Kura A., Tanimoto T., Torigoe K., Okura T., Nukada Y., Hattori K., Akita K., Namba M., Tanabe F., Konishi K., Fukuda S., Kurimoto M. Cloning of a new cytokine that induces IFN-y production by T cells. Nature 1994; 378: 88–91
  • Wolf S. F., Temple P. A., Kobayashi M., Young D., Dicig M., Lowe L., et al. Cloning of cDNA for natural killer stimulatory factor, a hetrodimeric cytokine with multiple biological effects on T and natural killer cells. J Immunol 1991; 146: 3074–3081
  • Gubler U., Chua A. O., Schoenhaut D. S., Dwyer C M, MaComas W., Motyka R., et al. Co-expression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci 1991; 88: 4143–4147
  • Hsieh C. S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of Thl CD4+ T cells through IL-12 produced by Listeria-induced macorphages. Science 1993; 260: 547–549
  • Manetti R., Parronchi P., Giudizi M. G., Piccini M. P., Maggi E., Trinchieri G., et al. Natural killer cell stimulatory factor (interleukin-12) induces T helper type 1 (Thl)-specific immune responses and inhibits the development of IL-4 producing Th cells. J Exp Med 1993; 177: 1199–1204
  • Alfoso L. C. C, Scharton T. M., Vieira L. Q., Wyso-Cka M., Trinchieri G., Scott P. The adjuvant effect of interleukin-12 in a vaccine against Leishmanial major. Science 1994; 263: 235–237
  • Trembleau S., Penna G., Bosi E., Mortara A., Gately M. K., Adorini L. Interleukin-12 administration induces T helper type I cells and accelerates autoimmune diabetes in NOD mice. J Exp Med 1995; 181: 817–821
  • Micallef M. J., Ohtsuki T., Kohno K., Tanabe F., Us-Hio S., Namba M., Tanimoto T., Torigoe K., Fujii M., Ikeda M. M., Fukuda S., Kurimoto M. Inter-feron-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. Eur J Immunol 1996; 26: 1647–1651
  • Rothe H., Burkart V., Faust A., Kolb H. Interleukin-12 gene expression is associated with rapid diabetes development in NOD mice. Diabetologia 1996; 39: 119–122
  • Powrie F., Menon S., Coffman R. L. Interleukin-4 and interleukin-10 synergize to inhibit cell mediated immunity in vivo. Eur J Immunol 1993; 23: 3043–3049
  • Fiorentino D. F., Zlotnik A., Vieira P., Mosmann T. R., Howard M., Moore K. W., O'Garra A. IL-10 acts on the antigen presenting cell to inhibit cytokine production by Thl cells. 1 Immunol 1991; 146: 3444–3451
  • Dandrea A., Asteamezaga M., Valiante N. M., Ma X. J., Kubin M., Trinchieri G. Interleukin-10 (IL-10) inhibits human lymphocyte interferon-gamma production by suppressing natural killer stimulatory factor/IL-12 synthesis in accessory cells. J. Exp. Med. 1993; 178: 1041–1048
  • Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin 10. J Exp Med 1991; 174: 1549–1555
  • Moore K., O'Garra A., De Wal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annual Rev Immunol 1993; 11: 165–190
  • Pennline K. J., Roquegaffney E., Monahan M. Recombinant human IL-10 prevents the onset of diabetes in nonobese diabetic mouse. Clin Immunol Immunopathol 1994; 71: 169–175
  • Rabinovitch A., Sorensen O., Suarez-Pinzon W. L., Power R. F., Rajotte R. V., Bleackey R. C. Analysis of cytokine mRNA expression in syngeneic islet grafts of NOD mice:interleukin-2 and interferone-γ mRNA expression correlate with graft injection and interleukin-10 with graft survival. Diabetologia 1994

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.