23
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Regulation of the Effector Stages of Experimental Autoimmune Encephalomyelitis via Neuroantigen-Specific Tolerance Induction. III. A Role for Anergy/Deletion*

, , &
Pages 13-28 | Received 06 Jan 1997, Published online: 07 Jul 2009

References

  • Brown A. M., McFarlin D. E. Relapsing experimental allergic encephalomyelitis in the SJL/J mouse. Lab Invest 1981; 45: 278–284
  • Lublin F. D., Maurer P. H., Berry R. G., Tippett D. Delayed, relapsing experimental allergic encephalomyelitis in mice. J Immunol 1981; 126: 819–822
  • Fritz R. B., Chou C. H., McFarlin D. E. Induction of experimental allergic encephalomyelitis in PL/J and (SJL/J × PL/J) Fl mice by myelin basic protein and its peptides: localization of a second encephalitogenic determinant. J Immunol 1983; 130: 191–194
  • Trotter J. L., Clark H. B., Collins K. G., Wegeschiede C. L., Scarpellini J. D. Myelin proteolipid protein induces demyelinating disease in mice. J Neurol Sd 1987; 79: 173–188
  • Pettinelli C. B., McFarlin D. E. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+2− T lymphocytes. J Immunol 1981; 127: 1420–1423
  • Mokhtarian F., McFarlin D. E., Raine C. S. Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 1984; 309: 356–358
  • van der Veen R. C, Trotter J. L., Clark H. B., Kapp J. A. The adoptive transfer of chronic relapsing experimental allergic encephalomyelitis with lymph node cells sensitized to myelin proteolipid protein. J Neuroim-munol 1989; 21: 183–191
  • Lublin F. D. Relapsing experimental allergic encephalomyelitis. An autoimmune model of multiple sclerosis. Springer Semin Immunopathol 1985; 8: 197–208
  • Arnason B. G. Relevance of experimental allergic encephalomyelitis to multiple sclerosis. Neurol Clin 1983; 1: 765–782
  • Kennedy M. K., Tan L. J., Dal Canto M. C., Miller S. D. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. J Immunol; 1990; 145: 117–126
  • Tan L. J., Kennedy M. K., Miller S. D. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T cell inhibition. J Immunol 1992; 148: 2748–2755
  • Tan L-J., Kennedy M. K., Dal Canto M. C., Miller S. D. Successful treatment of paralytic relapses in adoptive experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance. J Immunol 1991; 147: 1797–1802
  • McRae B. L., Vanderlugt C. L., Dal Canto M. C., Miller S. D. Functional evidence for epitope spreading in the relapsing pathology of EAE in the SJL/J mouse. J Exp Med 1995; 182: 75–85
  • Miller S. D., McRae B. L., Vanderlugt C. L., Nikcevich K. M., Pope J. G., Pope L. Evolution of the T cell repertoire during the course of experimental autoimmune encephalomyelitis. Immunol Rev 1995; 144: 225–244
  • Yu M., Johnson J. M., Tuohy V. K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: A basis for peptide-specific therapy after onset of clinical disease. J Exp Med 1996; 183: 1777–1788
  • Kennedy K. J., Smith W. S., Miller S. D., Karpus W. J. Induction of antigen-specific tolerance for the treatment of ongoing relapsing autoimmune encephalomyelitis. A comparison between oral and peripheral tolerance. Eur J Immunol 1997
  • Miller S. D., Sy M. S., Claman H. N. The induction of hapten-specific T cell tolerance using hapten-modified lymphoid membranes. II. Relative roles of suppressor T cells and clone inhibition in the tolerant state. Eur J Immunol 1977; 7: 165–170
  • Miller S. D., Claman H. N. The induction of hapten-specific T cell tolerance using hapten-modified lymphoid cells. I. Characteristics of tolerance induction. J Immunol 1976; 117: 1519–1526
  • Sherr D. H., Cheung N. K., Heghinian K. M., Benacer-Raf B., Dorf M. E. Immune suppression in vivo with antigen-modified syngeneic cells. II. T cell mediated nonresponsiveness to fowl gamma globulin. J Immunol 1978; 122: 1899–1908
  • Tarleton R. L., Beyer A. M. Medium-scale production and purification of monoclonal antibodies in protein-free medium. Bio Techniques 1991; 11: 590–593
  • Miller S. D., Wetzig R. P., Claman H. N. The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J Exp Med 1979; 149: 758–773
  • Armitage P. Statistical Methods in Medical Research. John Wiley, New York 1971
  • Miller A., Lider O., Roberts A. B., Sporn M. B., Weiner H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor b after antigen-specific triggering. Proc Natl Acad Sci USA 1992; 89: 421–425
  • Ofosu-Appiah W., Mokhtarian F. Characterization of a T suppressor cell line that downgrades experimental allergic encephalomyelitis in mice. Cell Immunol 1991; 135: 143–153
  • Sehon A. H. Suppressor T cells induced in vivo by tolerogenic conjugates of a given antigen and mono-methoxypolyethylene glycol downregulate antibody formation also to a second antigen, if the latter is presented as a covalent adduct with the former. Advances In Experimental Medicine & Biology 1991; 303: 199–206
  • Debre P., Waltenbaugh C, Dorf M. E., Benacerraf B. Genetic control of specific suppression. IV. Responsiveness to the random copolymer L-glutamic acid50-L-tyrosine50 induced in BALB/c mice by cyclophosphamide. J Exp Med 1976; 144: 277–290
  • Lando Z., Teitelbaum D., Arnon R. Effect of cyclophosphamide on suppressor cell activity in mice unresponsive to EAE. J Immunol 1979; 123: 2156–2160
  • McKenna R. M., Carter B. G., Sehon A. H. Studies on the mechanism of suppression of experimental allergic encephalomyelitis induced by myelin basic proteirf-cell conjugates. Cell Immunol 1984; 88: 251–259
  • Karpus W. J., Swanborg R. H. CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-beta. J Immunol 1991; 146: 1163–1168
  • Flynn J. C., Kong Y. M. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis. Clin Immunol Immunopathol 1991; 60: 484–494
  • Chen Y., Kuchroo V. K., Inobe J., Hafler D. A., Weiner H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237–1240
  • Beraud E., Varriale S., Farnarier C., Bernard D. Suppressor cells in Lewis rats with experimental allergic encephalomyelitis: prevention of the disease and inhibition of lymphocyte proliferation by the suppressor cells or their products. Eur J Immunol 1982; 12: 926–930
  • Whitacre C. C, Gienapp I. E., Orosz C. G., Bitar D. M. Oral tolerance in experimental autoimmune encephalomyelitis: III. Evidence for clonal anergy. J Immunol 1991; 147: 2155–2163
  • Fallis R. J., Powers M. L., Sy M. S., Weiner H. L. Adoptive transfer of murine chronic-relapsing autoimmune encephalomyelitis. Analysis of basic protein-reactive cells in lymphoid organs and nervous system of donor and recipient animals. J Neuroimmunol 1987; 14: 205–219
  • Cross A. H., Raine C. S. Serial adoptive transfer of murine experimental allergic encephalomyelitis: successful transfer is dependent on active disease in the donor. J Neuroimmunol 1990; 28: 27–37
  • Vandenbark A. A., Vainiene M., Ariail K., Miller S. D., Offner H. Prevention and treatment of relapsing autoimmune encephalomyelitis with myelin peptide-coupled splenocytes. J Neurosci Res 1996; 45: 430–438
  • Miller S. D., Karpus W. J. The immunopatho-genesis and regulation of T-cell mediated demyelinating diseases. Immunol Today 1994; 15: 356–361
  • Peterson J. D., Karpus W. J., Clatch R. J., Miller S. D. Split tolerance of Th1 and Th2 cells in tolerance to Theiler's murine encephalomyelitis virus. Eur J Immunol 1993; 23: 46–55
  • Karpus W. J., Peterson J. D., Miller S. D. Anergy in vivo, Down-regulation of antigen-specific CD4+ Thl but not Th2 cytokine responses. Int Immunol 1994; 6: 721–730
  • Santambrogio L., Crisi G. M., Leu J., Hochwald G. M, Ryan T., Thorbecke G. J. Tolerogenic forms of auto-antigens and cytokines in the induction of resistance to experimental allergic encephalomyelitis. J Neuroimmunol 1995; 58: 211–222
  • Miller S. D., Tan L. J., Pope L., McRae B. L., Karpus W. J. Antigen-specific tolerance as a therapy for experimental autoimmune encephalomyelitis. Int Rev Immunol 1992; 9: 203–222
  • Kearney E. R., Walunas T. L., Karr R. W., Morton P. A., Loh D. Y., Bluestone J. A. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J Immunol 1995; 155: 1032–1036
  • Kearney E. R., Pape K. A., Loh D. Y., Jenkins M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1994; 1: 327–339
  • Yednock T. A., Cannon C, Fritz L. C, Sanchez-Madrid F., Steinman L., Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against a4bl integrin. Nature 1992; 356: 63–66
  • Ruddle N. H., Bergman C. M., McGrath K. M., Lingen-Held E. G., Grunnet M. L., Padula S. J. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 1990; 172: 1193–1200
  • Baron J. L., Madri J. A., Ruddle N. H., Hashim G., Janeway C. A. Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 1993; 177: 57–68
  • Matsumoto Y., Fujiwara M. Adoptively transferred experimental allergic encephalomyelitis in chimeric rats: identification of transferred cells in the lesions of the central nervous system. Immunol 1988; 65: 23–29
  • Hickey W. F., Hsu B. L., Kimura H. T lymphocyte entry into the central nervous system. J Neurosci Res 1991; 28: 254–260
  • Offner H., Buenafe A. C, Vainiene M., Celnik B., Weinberg A. D., Gold D. P. Where, when, and how to detect biased expression of disease-relevant V beta genes in rats with experimental autoimmune encephalomyelitis. J Immunol 1993; 151: 506–517
  • Koh D. R., Fung-Leung W. P., Ho A., Gray D., Acha-Orbea H., Mak T. W. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8−/- mice. Science 1992; 256: 1210–1213
  • Jiang H., Zhang S. I., Pernis B. Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 1992; 256: 1213–1215
  • Kumar V., Sercarz E. E. The involvement of T cell receptor peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease. J Exp Med 1993; 178: 909–916
  • Offner H., Hashim G. A., Vandenbark A. A. T cell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis. Science 1991; 251: 430–432
  • Jenkins M. K., Schwartz R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 1987; 165: 302–319
  • Jenkins M. K., Pardoll D. M., Mizuguchi J., Quill H., Schwartz R. H. T-cell unresponsiveness in vivo and in vitro: fine specificity of induction and molecular characterization of the unresponsive state. Immunol Rev 1987; 95: 113–135
  • Norton S. D., Zuckerman L., Urdahl K. B., Shefner R., Miller J., Jenkins M. K. The CD28 ligand, B7, enhances IL-2 production by providing a costimulatory signal to T cells. J Immunol 1992; 149: 1556–1561

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.