764
Views
52
CrossRef citations to date
0
Altmetric
Research Article

The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35)

&
Pages 524-535 | Received 15 Feb 2009, Accepted 24 Feb 2009, Published online: 30 Oct 2009

References

  • Furtado, P.B., Huang, C.Y., Ihyembe, D., et al. The partly folded back solution structure arrangement of the 30 scr domains in human complement receptor type 1 (cr1) permits access to its C3b and C4b ligands. J. Mol. Biol. 2008, 375, 102–118.
  • Ahearn, J.M., Fearon, D.T. Structure and function of the complement receptor CR1 (CD35) and CR2 (CD21). Adv. Immunol. 1989, 46, 183–219.
  • Delibrias, C., Fischer, E., Kazatchkine, M.D. Receptors for human C3 fragments. In: Rother, K., Till, G.O., Hansch, G.M. (Eds.), The Complement System. Springer, Berlin: Springer, 1997; 211–220.
  • Wagner, C., Ochmann, C., Schoels, M., et al. The complement receptor 1, CR1 (CD35), mediates inhibitory signals in human T-lymphocytes. Molec. Immunol. 2006, 43, 643–651.
  • Ghiran, I., Barbashov, S.F., Klickstein, L.B., et al. Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J. Exp. Med. 2000, 192, 1797–1808.
  • Tas, S., Klickstein, L.B., Barbashov, S.F., Nicholson-Weller, A. C1q and C4b bind simultaneously to CR1 and additively support erythrocyte adhesion. J. Immunol. 1999, 136, 5056–5063.
  • Walport, M. J. Complement. Second of two parts. N. Engl. J. Med. 2001, 344, 1140–1144.
  • Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 2001, 344, 1058–1066.
  • Michael Kirschfink, M., Mollnes, T.E. Modern Complement Analysis. Clin.Diag. Lab. Immunol. 2003, 10(6), 982–989.
  • Liu, D., Zhu, J.Y., Niu, Z.X. Molecular structure and expression of anthropic, ovine, and murine forms of complement receptor type 2. Clin. Vacc. Immunol. 2008, 15(6), 901–910.
  • Gasque, P. Complement: A unique innate immune sensor for danger signals. Molec. Immunol. 2004, 41, 1089–1098.
  • Farries, T.C., Lachmann, P.J., Harrison, R.A. Analysis of the interactions between properdin, the third component of complement (C3), and its physiological activation products. Biochem. J. 1988, 252, 47–54.
  • Gewurz, H., Ying, S.C., Jiang, H., Lint, T.F. Nonimmune activation of the classical complement pathway. Behring Inst. Mitt. 1993, 93, 138–147.
  • Kilpatrick, J.M.,Volanakis, J.E. Molecular genetics, structure, and function of C-reactive protein. Immunol. Res. 1991, 10, 43–53.
  • Armstrong, P.B., Armstrong, M.T., Quigley, J.P. Involvement of alpha 2-macroglobulin and C-reactive protein in a complement-like hemolytic system in the arthropod, Limulus polyphemus. Mol. Immunol. 1993, 30, 929–934.
  • Liu, T.Y., Minetti, C.A., Fortes-Dias, C.L., et al. C-reactive proteins, limunectin, lipopolysaccharide-binding protein, and coagulin, molecules with lectin and agglutinin activities from Limulus polyphemus. Ann. N.Y. Acad. Sci. 1994, 712, 146–154.
  • Tharia, H.A., Shrive, A.K., Mills, J.D., et al. Complete cDNA sequence of SAP-like pentraxin from Limulus polyphemus: Implications for pentraxin evolution. J. Mol. Biol. 2002, 316, 583–597.
  • Bharadwaj, D., Stein, M.P., Volzer, M., et al. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J. Exp. Med. 1999, 190, 585–590.
  • Jack, D.L., Klein, N.J., Turner, M.W. Mannose-binding lectin: Targeting the microbial world for complement attack and opsonophagocytosis. Immunol. Rev. 2001,180, 86–99.
  • Petersen, S.V., Thiel, S., Jensenius, J.C. The mannan-binding lectin pathway of complement activation: Biology and disease association. Mol. Immunol. 2001,38, 133–149.
  • Fujita, T., Matsushita, M., Endo, Y. The lectin-complement pathway—Its role in innate immunity and evolution. Immunol. Rev. 2004, 198, 185–202.
  • Matsushita, M., Endo, Y., and Fujita, T. Complement-activating complex of ficolin and mannose-binding lectin-associated serine protease. J. Immunol. 2000, 164, 2281–2284.
  • Reid, K.B.M., Turner, M.W. Mammalian lectins in activation and clearance mechanisms involving the complement system. Springer Semin. Immunopathol. 1994, 15, 307–325.
  • Calender, A., Billaud, M., Aubry, J.P., et al.. Epstein-Barr virus EBV induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 8060–8064.
  • Malhotra, R., Wormald, M.R., Rudd, P.M., et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1995, 1, 237–243.
  • Selander, B., Martensson, U., Weintraub, A., et al. Mannanbinding lectin activates C3 and the alternative complement pathway without involvement of C2. J. Clin. Invest. 2006, 116, 1423–1434.
  • Dahl, M.R., Thiel, S., Matsushita, M., et al. MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 2001, 15, 127–135.
  • Rossi, V., Cseh, S., Bally, I., et al. Substrate specificities of recombinant mannan-binding lectin-associated serine proteases-1 and -2. J. Biol. Chem. 2001, 276, 40880–40887.
  • Stover, C., Endo, Y., Takahashi, M., et al. The human gene for mannanbinding lectin-associated serine protease-2 (MASP-2), the effector component of the lectin route of complement activation, is part of a tightly linked gene cluster on chromosome 1p36.2-3. Genes Immun. 2001, 2, 119–127.
  • Boackle, S.A. Complement and autoimmunity. Biomed.Pharmacother. 2003, 57, 269–273.
  • Petty, H.R., Worth, R.G., Todd, R.R. Interactions of integrins with their partner proteins in leukocyte membranes. Immunol. Res. 2002, 25, 75– 95.
  • Dykman, T.R., Cole, J.L., Iida, K., Atkinson, J.P. Polymorphism of human erythrocyte C3b/C4b receptor, Proc. Natl. Acad. Sci. U.S.A. 1983, 80,1698–1702.
  • Dykman, T.R., Hatch, J.A., Aqua, M.S., Atkinson, J.P. Polymorphism of the C3b/C4b (CR1) receptor: Characterization of a fourth allele, J. Immunol. 1985, 134,1787.
  • Dykman, T.R., Hatch, J.A., Atkinson, J.P. Polymorphism of the human C3b/C4b receptor. Identification of a third allele and analysis of receptor phenotypes in families and patients with systemic lupus erythematosus, J. Exp. Med. 1984, 159, 691–703.
  • Wong, W.W., Wilson, J.G., Fearon, D.T. Genetic regulation of a structural polymorphism of human C3b receptor, J. Clin. Invest. 1983, 72, 685–693.
  • Fearon, D.T., Ahearn, JM. Complement receptor type 1 (C3b/C4b receptor; Cd35) and complement receptor type 2 (C3d/Epstein-Barr virus receptor; CD21), Curr. Top. Microbiol. Immunol. 1989, 153,83–98.
  • Fearon, D.T., Wong, W.W. Complement ligand-receptor interactions that mediate biological responses. Annu. Rev. Immunol. 1983, 1, 243–271.
  • Funkhouser, T., Vik, D.P. Promoter activity of the 5’ flanking region of the complement receptor type 1 (CR1) gene: Basal and induced transcription. Biochim. Biophys. Acta 2000, 1490, 99–105.
  • Ahearn, J.M., Fischer, M.B., Croix, D.A., et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 1996, 4, 251–262.
  • Carroll, M.C. The role of complement in B cell activation and tolerance. Adv. Immunol. 2000, 74, 61–88.
  • Haas, K.M., Hasegawa, M., Steeber, D.A., et al. Complement receptors CD21/35 link innate and protective immunity during Streptococcus pneumoniae infection by regulating IgG3 antibody responses. Immunity 2002, 17, 713–723.
  • Molina, H., Holers, V.M., Li, B., et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 3357–3361.
  • Fairweather, D., Frisancho-Kiss, S., Njoku, D.B., et al. Complement receptor 1 and 2 deficiency increases coxsackievirus B3- induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-1beta, and immune complex deposition in the heart. J. Immunol. 2006, 176, 3516–3524.
  • Kaya, Z., Afanasyeva, M., Wang, Y., et al. Contribution of the innate immune system to autoimmune myocarditis: A role for complement. Nat. Immunol. 2001, 2, 739–745.
  • Pratt, J.R., Abe, K., Miyazaki, M., et al. In situ localization of C3 synthesis in experimental acute renal allograft rejection. Am. J. Pathol. 2000, 157, 825–831.
  • Helmy, K.Y., Katschke, K.J., Gorgani, N.N., et al. CRIg: A macrophage complement receptor required for phagocytosis and circulating pathogens. Cell 2006, 124, 915–927.
  • Avirutnan, P., Mehlhop, E., Diamond, M.S. Complement and its role in protection and pathogenesis of flavivirus infections. Vaccine 2008, 26S 1100–1107.
  • Holers, V.M. The complement system as a therapeutic target in autoimmunity. Clin. Immunol. 2003, 107, 140–151.
  • Thurman, J.M., Holers, V.M. The central role of the alternative complement pathway in human disease. J. Immunol. 2006, 176, 1305–1310.
  • Fingeroth, J.D., Weis, J.J., Tedder, T.F., et al. Epstein–Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 4510–4514.
  • Holers, V.M. Complement receptors and the shaping of the natural antibody repertoire. Springer Sem. Immunopathol. 2005, 26, 405–423.
  • Holers, V.M., Carroll, M.C., Holers, V.M. Innate Autoimmun. Adv. Immunol. 2005, 86, 137–157.
  • Reid, R.R., Woodstock, S., Shimabukuro-Vornhagen, A., et al. Functional activity of natural antibody is altered in Cr2-deficient mice. J. Immunol. 2002, 169, 5433–5440.
  • Zhang, M., Alicot, E.M., Chiu, I., et al. Identification of the target self antigens in reperfusion injury. J. Exp. Med. 2006, 203, 141–152.
  • Zhang, M., Austen Jr., W.G., Chiu, I., et al. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 3886– 3891.
  • Erdei, A., Prechl, J., Isaak, A., Molnar, E. Regulation of B-cell activation by complement receptors CD21 and CD35. Curr. Pharm. Des. 2003, 9, 1849– 1860.
  • Fearon, D.T. The complement system and adaptive immunity. Immunology 1998, 10, 355–361.
  • Fang, Y., Xu, C., Fu, Y.X., et al. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 1998, 160, 5273–5279.
  • Rodgaard, A., Christensen, L.D., Thomsen, B.S., et al. Complement receptor type 1 (CR1, CD35) expression on peripheral T lymphocytes: Both CD4- and CD8-positive cells express CR1. Complement. Inflamm. 1991, 8, 303–309.
  • Weiss, L., Fischer, E., Haeffner-Cavaillon, N., et al. The human C3b receptor (CR1). Adv. Nephrol. Necker Hosp. 1989, 18, 249–269.
  • Danielsson, C., Pascual, M., French, L., et al. Soluble complement receptor type 1 (CD35) is released from leukocytes by surface cleavage. Eur. J. Immunol. 1994, 24, 2725–2731.
  • Pascual, M., Steiger, G., Sadallah, S., et al. Identification of membrane-bound CR1 (CD35) in human urine: Evidence for its release by glomerular podocytes. J. Exp. Med. 1994, 179, 889–899.
  • Weis, J.H., Morton, C.C., Bruns, G.A.P., et al. A complement receptor locus: Genes encoding C3b/C4b receptor and Cad/Epstein-Barr virus receptor map to 1g32. J. Immunol. 1987, 138, 312.
  • Rodriguez de Cordoba, S., Rubinstein, P. Quantitative variations of the C3b/C4b receptor (CR1) in human erythrocytes are controlled by genes within the regulator of complement activation (RCA) gene cluster. J. Exp. Med. 1986, 164, 1274–1283.
  • Krych-Goldberg, M., Atkinson, J.P. Structure-function relationships of complement receptor type 1. Immunol. Rev. 2001, 180, 112–122
  • Krych-Goldberg, M., Moulds, J.M., Atkinson, J.P. Human complement receptor type 1 (CR1) binds to a major malarial adhesin. TRENDS in Molec. Med. 2002, 8 (11), 31–37.
  • Lublin, D.M., Griffith, R.C., Atkinson, J.P. Influence of glycosylation on allelic and cell-specific Mr variation, receptor processing, and ligand binding of the human complement C3b/C4b receptor. J. Biol. Chem. 1986, 261, 5736–5744.
  • Wong, W.W., Kennedy, C.A., Bonaccio, E.T., et al. Analysis of multiple restriction fragment length polymorphisms of the gene for the human complement receptor type I. Duplication of genomic sequences occurs in association with a high molecular mass receptor allotype. J. Exp. Med. 1986, 164, 1531–1546.
  • Holers, V.M., Chaplin, D.D., Leykam, J.F., et al. Human complement C3b/C4b receptor (CR1) mRNA polymorphism that correlates with the CR1 allelic molecular weight polymorphism. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 2459–2463.
  • Van Dyne, S., Holers, V.M., Lublin, D.M., et al. The polymorphism of the C3b/C4b receptor in the normal population and in patients with systemic lupus erythematosus. Clin. Exp. Immunol. 1987, 68, 570–579.
  • Moulds, J.M., Reveille, J.D., Arnett, F.C. Structural polymorphisms of complement receptor 1 (CR1) in systemic lupus erythematosus (SLE) patients and normal controls of three ethnic groups. Clin. Exp. Immunol. 1996, 105, 302–305.
  • Katyal, M., Sivasankar, B., Ayub, S., Das, N. Genetic and structural polymorphism of complement receptor 1 in normal Indian subjects. Immunol. Lett. 2003, 89, 93–98.
  • Birmingham, D.J., Chen, W., Liang, G., et al. A CR1 polymorphism associated with constitutive erythrocyte CR1 levels affects binding to C4b but not C3b. Immunology 2003, 108, 531–538.
  • Xiang, L., Rundles, J.R., Hamilton, D.R., Wilson, J.G. Quantitative alleles of CR1: Coding sequence analysis and comparison of haplotypes in two ethnic groups. J. Immunol. 1999, 163, 4939–4945.
  • Thomas, B.N., Donvito, B., Cockburn, I., et al. A complement receptor-1 polymorphism with high frequency in malaria endemic regions of Asia but not Africa. Genes Immun. 2005, 6, 31–36.
  • Wilson, J.G., Wong, W.W., Schur, P.H., Fearon, D.T. Mode of inheritance of decreased C3b receptors on erythrocytes of patients with systemic lupus erythematosus. N. Engl. J. Med. 1982, 307, 981–986.
  • Wilson, J.G., Ratnoff, W.D., Schur, P.H., Fearon, D.T. Decreased expression of the C3b/C4b receptor (CR1) and the C3d receptor (CR2) on B lymphocytes and of CR1 on neutrophils of patients with systemic lupus erythematosus. Arthritis Rheum. 1986, 29, 739–747.
  • Wilson, J.G., Wong, W.W., Murphy III, E.E., et al. Deficiency of the C3b/C4b receptor (CR1) of erythrocytes in systemic lupus erythematosus: Analysis of the stability of the defect and of a restriction fragment length polymorphism of the CR1 gene. J. Immunol. 1987, 138, 2708–2710.
  • Rowe, J.A., Raza, A., Diallo, D.A., et al. Erythrocyte CR1 expression level does not correlate with a HindIII restriction fragment length polymorphism in Africans: Implications for studies on malaria susceptibility. Genes Immun. 2002, 3, 497–500.
  • Moulds, M.K. Serological investigation and clinical significance of high-titer, low-avidity (HTLA) antibodies. Am. J. Med. Technol. 1981, 47, 789–795.
  • Daniels, G.L., Anstee, D.J., Cartron, J.P., et al. Blood group terminology 1995. ISBT working party on terminology for red cell surface antigens. Vox Sang 1995, 69, 265–279.
  • Moulds, J.M., Nickells, M.W., Moulds, J.J., et al. The C3b/C4b receptor is recognized by the Knops, McCoy, Swain-Langley, and York blood group antisera. J. Exp. Med. 1991, 173, 1159–1163.
  • Rao, N., Ferguson, D.J., Lee, S.F., Telen, M.J. Identification of human erythrocyte blood group antigens on the C3b/C4b receptor. J. Immunol. 1991,146, 3502–3507.
  • Moulds, J.M., Zimmerman, P.A., Doumbo, O.K., et al. Molecular identification of Knops blood group polymorphisms found in long homologous region D of complement receptor 1. Blood 2001, 97, 2879–2885.
  • Tamasauskas, D., Powell, V., Schawalder, A., Yazdanbakhsh, K. Localization of Knops system antigens in the long homologous repeats of complement receptor 1. Transfusion 2001, 41, 1397–1404.
  • Moulds, J.M. Understanding the Knops blood group and its role in malaria. Vox Sang 2002, 83 (Suppl. 1), 185–188.
  • Moulds, J.M., Thomas, B.J., Doumbo, O., et al. Identification of the Kna/Knb polymorphism and a method for Knops genotyping. Transfusion 2004, 44, 164–169.
  • Moulds, J.M., Moulds, J.J., Brown, M., Atkinson, J.P. Antiglobulin testing for CR1-related (Knops/McCoy/Swain–Langley/York) blood group antigens: Negative and weak reactions are caused by variable expression of CR1. Vox Sang 1992, 62, 230–235.
  • Andrásfalvy, M., Prechl, J., Hardy, T., et al. Mucosal type mast cells express complement receptor type 2 (CD21). Immunol. Lett. 2002, 82, 29–34.
  • Barrington, R.A., Pozdnyakova, O., Zafari, M.R., et al. Blymphocytememory: Role of stromal cell complement and FcgammaRIIB receptors. J. Exp. Med. 2002, 196(9), 1189–99.
  • Fischer, M.B., Goerg, S., Shen, L., et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 1998, 280(5363), 582–5.
  • Wu, X., Jiang, N., Fang, Y.F., et al. Impaired affinity maturation in Cr2−/− mice is rescued by adjuvants without improvement in germinal center development. J. Immunol. 2000, 165(6), 3119–27.
  • Fearon, D.T. Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J. Exp. Med. 1980, 152(1), 20–30.
  • Klickstein, L.B., Barbashov, S.F., Liu, T., et al. Complement receptor type 1 (CR1 CD35) is a receptor for C1q. Immunity 1997, 7(3), 345–55.
  • Tedder, T.F., Fearon, D.T., Gartland, G.L., Cooper, M.D. Expression of C3b receptors on human be cells and myelomonocytic cells but not natural killer cells. J. Immunol. 1983, 130(4), 1668–73.
  • Bogers, W.M., Stad, R.K., Van Es, L.A., Daha, M.R. Both Kupffer cells and liver endothelial cells play an important role in the clearance of IgA and IgG immune complexes. Res. Immunol. 1992, 143(2), 219–24.
  • Craig, M.L., Bankovich, A.J., McElhenny, J.L., Taylor, R.P. Clearance of antidouble-stranded DNA antibodies: The natural immune complex clearance mechanism. Arthritis Rheum. 2000, 43(10), 2265–75.
  • Kinoshita, T., Takeda, J., Hong, K., et al. Monoclonal antibodies to mousecomplement receptor type 1 (CR1). Their use in a distribution study showing that mouse erythrocytes and platelets are CR1-negative. J. Immunol. 1988, 140(9), 3066–72.
  • Kurtz, C.B., O’Toole, E., Christensen, S.M., Weis, J.H. The murine complement receptor gene family. IV. Alternative splicing of Cr2 gene transcripts predicts two distinct gene products that share homologous domains with both human CR2 and CR1. J. Immunol 1990, 144(9), 3581–91.
  • Molina, H., Kinoshita, T., Inoue, K., et al. A molecular and immunochemical characterization of mouse CR2. Evidence for a single gene model of mouse complement receptors 1 and 2. J. Immunol. 1990, 145(9), 2974–83.
  • Chen, Z., Koralov, S.B., Gendelman, M., et al. Humoral immune responses in Cr2−/− mice: Enhanced affinity maturation but impaired antibody persistence. J. Immunol. 2000, 164(9), 4522–32.
  • Croix, DA, Ahearn, JM, Rosengard, A.M., et al. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J. Exp. Med. 1996, 183(4), 1857–64.
  • Kopf, M., Abel, B., Gallimore, A., et al. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med. 2002, 8(4), 373–8.
  • Suresh, M., Molina, H., Salvato, M.S., et al. Complement component 3 is required for optimal expansion of CD8 T cells during a systemic viral infection. J. Immunol. 2003, 170(2), 788–94.
  • Qin, D., Wu, J., Carroll, M.C., et al. Evidence for an important interaction between a complement-derived CD21 ligand on follicular dendritic cells andCD21 on B cells in the initiation of IgG responses. J. Immunol. 1998, 161(9), 4549–54.
  • Limb, G.A., Hamblin, A.S., Wolstencroft, R.A., Dumonde, D.C. Selective upregulation of human granulocyte integrins and complement receptor 1 by cytokines. Immunology 1991, 74, 696–702.
  • Doi, T., Takemura, S., Ueda, M., et al. Suppressed increase of C3 receptors on polymorphonuclear leukocytes by stimulation with C5a in diabetes mellitus. Arerugi 1995, 44, 1223–1228.
  • Arora, V., Mondal, A.M., Grover, R., et al. Modulation of CR1 transcript in systemic lupus erythematosus (SLE) by IFN-gamma and immune complex. Mol. Immunol. 2007, 44, 1722–1728.
  • Mucida, D., Park, Y., Kim, G., et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007, 317, 256–260.
  • Raju, KR., Sivasankar, B., Anand, V., et al. Use of complement receptor 1 (CD35) assay in the diagnosis and prognosis of immune complex mediated glomerulopathies [J]. Asian Pac J Allergy Immunol, 2001, 19(1), 23–27.
  • Iida, K., Nussenzweig, V. Complement receptor is an inhibitor of the complement cascade. J. Exp. Med. 1981, 153, 1138–1150.
  • Ross, G.D., Lambris, J.D., Cain, J.A., Newman, S.L. Generation of three different fragments of bound C3 with purified factor I or serum. I. Requirements for factor H vs. CR1 cofactor activity. J. Immunol. 1982, 129, 2051–2060.
  • Medof, M.E., Nussenzweig, V. Control of the function of substrate-bound C4b-C3b by the complement receptor Cr1. J. Exp. Med. 1984, 159, 1669–1685.
  • Yoshida, K., Yukiyama, Y., Miyamoto, T. Interaction between immune complexes and C3b receptors on erythrocytes. Clin. Immunol. Immunopathol. 1986, 39, 213–221.
  • Cosio, F.G., Shen, X.P., Birmingham, D.J., et al. Evaluation of the mechanisms responsible for the reduction in erythrocyte complement receptors when immune complexes form in vivo in primates. J. Immunol. 1990, 145, 4198–4206.
  • Craig, M.L., Bankovich, A.J., Taylor, R.P. Visualization of the transfer reaction: Tracking immune complexes from erythrocyte complement receptor 1 to macrophages. Clin. Immunol. 2002, 105, 36–47.
  • van Es, L.A., Daha, M.R. Factors influencing the endocytosis of immune complexes. Adv. Nephrol. Necker Hosp. 1984, 13, 341–367.
  • Skogh, T., Blomhoff, R., Eskild, W., Berg, T. Hepatic uptake of circulating IgG immune complexes. Immunology 1985, 55, 585–594.
  • Fearon, D.T., Kaneko, I., Thomson, G.G. Membrane distribution and adsorptive endocytosis by C3b receptors on human polymorphonuclear leukocytes. J. Exp. Med. 1981, 153, 1615–1628.
  • Abrahamson, D.R., Fearon, D.T. Endocytosis of the C3b receptor of complement within coated pits in human polymorphonuclear leukocytes and monocytes. Lab. Invest. 1983, 48, 162–168.
  • Ehlenberger, A.G., Nussenzweig, V. The role of membrane receptors for C3b and C3d in phagocytosis. J. Exp. Med. 1977, 145, 357–371.
  • Schorlemmer, H.U., Hofstaetter, T., Seiler, F.R. Phagocytosis of immune complexes by human neutrophils and monocytes: Relative importance of Fc and C3b receptors. Behring Inst. Mitt. 1984, 88–97.
  • Sengelov, H., Kjeldsen, L., Kroeze, W., et al. Secretory vesicles are the intracellular reservoir of complement receptor 1 in human neutrophils. J. Immunol. 1994, 153, 804–810.
  • Fingeroth, J.D., Heath, M.E., Ambrosino, D.M. Proliferation of resting B cells is modulated by CR2 and CR1. Immunol. Lett. 1989, 21, 291–301.
  • Jozsi, M., Prechl, J., Bajtay, Z., Erdei, A. Complement receptor type 1 (CD35) mediates inhibitory signals in human B lymphocytes. J. Immunol. 2002, 168, 2782–2788.
  • Rodgaard, A., Thomsen, B.S., Bendixen, G., Bendtzen, K. Increased expression of complement receptor type 1 (CR1, CD35) on human peripheral blood T lymphocytes after polyclonal activation in vitro. Immunol. Res. 1995, 14, 69–76.
  • Hamer, I., Paccaud, J.P., Belin, D., et al. Soluble form of complement C3b/C4b receptor (CR1) results from a proteolytic cleavage in the C-terminal region of CR1 transmembrane domain. Biochem. J. 1998, 329 (Pt 1), 183–190.
  • Pascual, M., Duchosal, M.A., Steiger, G., et al. Circulating soluble CR1 (CD35). Serum levels in diseases and evidence for its release by human leukocytes. J. Immunol. 1993, 151, 1702–1711.
  • Hamacher, J., Sadallah, S., Schifferli, J.A., et al. Soluble complement receptor type 1 (CD35) in bronchoalveolar lavage of inflammatory lung diseases. Eur. Respir. 1998, J. 11, 112–119.
  • Das, N., Sivasankar, B., Tiwari, S.C., et al. Modulation of CR1 expression in glomerulonephritis. Int. Immunopharmacol. 2002, 2 (9), 1386.
  • Rickert R. C. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex. Curr.Opinion Immunol. 2005, 17, 237–243.
  • Medof, G. M., Oger Prince, J. Kinetics of interaction of immune complexes with complement receptor on human blood cells: Modification of complexes during interaction with red cells, Clin. Exp. Immunol. 1982, 48, 715–725.
  • Cornacoff, J.B., Hebert, L.A., Smead, W.L., et al. Primate erythrocyte-immune complex clearing mechanism. J. Clin. Invest. 1983, 71, 236–247.
  • Schifferli, J., Ng, Y., Estreicher, J., Walport, M. The clearance of tetanus toxoid/anti-tetanus toxoid immune complexes from the circulation of humans. Complement- and erythrocyte complement receptor 1 dependent mechanisms. J. Immunol. 1988, 140, 899–904.
  • Davies, K., Hird, V., Stewart, S., et al. A study of in vivo immune complex formation and clearance in man. J. Immunol. 1990, 144, 4613–4620.
  • Tausk, F.A., McCutchan, J.A., Spechko, P., et al. Altered erythrocyte C3b receptor expression, immune complexes, and complement activation in homosexual men in varying risk groups for acquired immune deficiency syndrome. J. Clin. Invest. 1986, 78, 977–982.
  • Schifferli, J.A., Ng, Y.C., Paccaud, J.P., Walport, M.J. The role of hypocomplementaemia and low erythrocyte complement receptor type 1 numbers in determining abnormal immune complex clearance in humans. Clin. Exp. Immunol. 1989, 75, 329–335.
  • Davies, K.A., Peters, A.M., Beynon, H.L.C., Walprot, M.J. Immune complex processing in patients with systemic lupus erythematosus. In vivo imaging and clearance studies. J. Clin. Invest. 1992, 90, 2075–2083.
  • Gibson, N.C., Waxman, F.J. Relationship between immune complex binding and release and the quantitative expression of the complement receptor type 1 (CR1, CD35) on human erythrocytes. Clin. Immunol. Immunopathol. 1994, 70, 104–113.
  • Prechl, J., Erdei, A. Immunomodulatory functions of murine CR1 /2. Immunopharmacology 2000, 49, 117– 124.
  • Fearon, D.T., Carter, R.H. The CD19/CR2/TAPA-1 complex of B-lymphocytes: Linking natural to acquired immunity. Annu. Rev. Immunol. 1995, 13, 127–149.
  • Tedder, T.F., Zhou, L.-J., Engel, P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today 1994, 15, 437–442.
  • Ahearn, J.M., Fischer, M.B., Croix, D.A., et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 1996, 4, 251–262.
  • Carter, R.H., Fearon, D.T. CD19: Lowering the threshold for antigen receptor stimulation of B-lymphocytes. Science 1992, 256, 105–107.
  • Boackle, S.A., Holers, V.M., Chen, X., et al. Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein. Immunity 2001, 15, 775–785.
  • Prodeus, A., Goerg, S., Shen, L.-M., et al. A critical role for complement in maintenance of self-tolerance. Immunity 1998, 9, 721–731.
  • Wu, X., Jiang, N., Deppong, C., et al. A role for the Cr2 gene in modifying autoantibody production in systemic lupus erythematosus. J. Immunol. 2002, 169, 1587–1592.
  • Cherukuru, A., Cheng, P.C., Sohn, H.W., Pierce, S.K. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity 2001, 14, 169–179.
  • Cherukuru, A., Pierce, S.K. The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J. Immunol. 2001, 167, 172.
  • Aubry, J.P., Pochon, S., Graber, P., Jansen, K.U., Bonnefoy, J.Y. CD21 is a ligand for CD23 and regulates IgE production. Nature 1992, 358, 505–507.
  • Kishimoto, T.K., O’Connor, K., Lee, A., Roberts, T.M., Springer, T.A. Cloning of the B subunit of the leukocyte adhesion proteins: Homology to an extracellular matrix receptor defines a novel supergene family. Cell 1987, 48, 681–690.
  • Brown, E.J. Complement receptors and phagocytosis. Curr. Opin. Immunol. 1991, 3, 76–82.
  • Rezonnico, R., Chicheportiche, R., Imbert, V., Dayer, J.M. Engagement of CD11b and CD11c beta2 integrin by antibodies or soluble CD23 induces IL-1beta production on primary human monocytes through mitogen-activated protein kinase-dependent pathways. Blood 2000, 95, 3877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.