58
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Viral sequence integration into introns of chemokine receptor genes

, , , , &
Pages 589-594 | Received 17 Feb 2009, Accepted 03 Mar 2009, Published online: 30 Oct 2009

References

  • Ikeda, T., Shibata, J., Yoshimura, K., Koito, A., Matsushita, S.Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J Infect Dis. 2007, 195(5), 716–725.
  • Nienhuis, A.W., Dunbar, C.E., Sorrentino, B.P. Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther. 2006, 13(6), 1031–1049.
  • Daniel, R., Smith, J.A. Integration site selection by retroviral vectors: Molecular mechanism and clinical consequences. Hum Gene Ther. 2008, 19(6), 557–568.
  • Schaffer, D.V., Koerber, J.T., Lim, K.I. Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng. 2008, 10, 169–194.
  • Nienhuis, A.W. Development of gene therapy for blood disorders. Blood. 2008, 111(9), 4431–4444.
  • Bauzon, M., Hermiston, T.W. Exploiting diversity: Genetic approaches to creating highly potent and efficacious oncolytic viruses. Curr Opin Mol Ther. 2008, 10(4), 350–355.
  • Harrington, K.J., Melcher, A., Vassaux, G., Pandha, H.S., Vile, R.G. Exploiting synergies between radiation and oncolytic viruses. Curr Opin Mol Ther. 2008, 10(4), 362–370.
  • Guo, Z.S., Thorne, S.H., Bartlett, D.L. Oncolytic virotherapy: Molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta. 2008, 1785(2), 217–231.
  • Matsuo, T., Heller, M., Petti, L., O’Shiro, E., Kieff, E. Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science. 1984, 226(4680), 1322–1325.
  • Shera, K.A., Shera, C.A., McDougall, J.K. Small tumor virus genomes are integrated near nuclear matrix attachment regions in transformed cells. J Virol. 2001, 75(24), 12339–12346.
  • Chang, C.M., Coville, J.L., Coquerelle, G., et al. Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens. BMC Genomics. 2006, 7, 19, doi: 10.1186/1471-2164-7-19.
  • Chang, C.M., Furet, J.P., Coville, J.L., et al. Quantitative effects of an intronic retroviral insertion on the transcription of the tyrosinase gene in recessive white chickens. Anim Genet. 2007, 38(2), 162–167.
  • Tsukahara, T., Agawa, H., Matsumoto, S., et al., Murine leukemia virus vector integration favors promoter regions and regional hot spots in a human T-cell line. Biochem Biophys Res Commun. 2006, 345(3), 1099–1107.
  • Mack, K.D., Jin, X., Yu, S., Wei, R., et al., HIV insertions within and proximal to host cell genes are a common finding in tissues containing high levels of HIV DNA and macrophage-associated p24 antigen expression. J Acquir Immune Defic Syndr. 2003, 33(3), 308–320.
  • Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M et al., LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003, 302(5644), 415–419.
  • Hacein-Bey-Abina, S., Garrigue, A., Wang, G.P., et al., Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008, 118(9), 3132–3142.
  • Valk, P.J., Hol, S., Vankan, Y., et al., The genes encoding the peripheral cannabinoid receptor and alpha-L-fucosidase are located near a newly identified common virus integration site, Evi11. J Virol. 1997, 71(9), 6796–6804.
  • Baum, C., Düllmann, J., Li, Z et al., Side effects of retroviral gene transfer into hematopoietic stem cells. Blood. 2003, 101(6), 2099–2114.
  • Themis, M., May, D., Coutelle, C., Newbold, R.F. Mutational effects of retrovirus insertion on the genome of V79 cells by an attenuated retrovirus vector: Implications for gene therapy. Gene Ther. 2003, 10(19), 1703–1711.
  • Laufs, S., Nagy, K.Z., Giordano, F.A., et al., Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther. 2004, 10(5), 874–881.
  • Takakuwa, T., Luo, W.J., Ham, M.F., et al., Integration of Epstein-Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression. Am J Pathol. 2004, 164(3), 967–974.
  • Kustikova, O., Fehse, B., Modlich, U., et al., Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science. 2005, 308(5725), 1171–1174.
  • Du, Y., Jenkins, N.A., Copeland, N.G. Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood. 2005, 106(12), 3932–3939.
  • Perincheri, S., Dingle, R.W., Peterson, M.L., Spear, B.T. Hereditary persistence of alpha-fetoprotein and H19 expression in liver of BALB/cJ mice is due to a retrovirus insertion in the Zhx2 gene. Proc Natl Acad Sci U S A. 2005, 102(2), 396–401.
  • Nienhuis, A.W. Assays to evaluate the genotoxicity of retroviral vectors. Mol Ther. 2006, 14(4), 459–460.
  • Lalani, A.S., McFadden, G. Evasion and exploitation of chemokines by viruses. Cytokine Growth Factor Rev. 1999, 10(3–4), 219–233.
  • Murphy, P.M. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol. 2001, 2(2), 116–122.
  • Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol. 2003, 3(1), 36–50.
  • Liston, A., McColl, S. Subversion of the chemokine world by microbial pathogens. Bioessays. 2003, 25(5), 478–488.
  • Holst, P.J., Rosenkilde, M.M. Microbiological exploitation of the chemokine system. Microbes Infect. 2003, 5(2), 179–187.
  • Horuk, R. Chemokine receptors. In Encyclopedic Reference of Molecular Pharmacology. Offermanns, S., Rosenthal, W., Eds. Berlin:Springer. 2003; 237–241.
  • Rosenkilde, M.M., Schwartz, T.W. The chemokine system - A major regulator of angiogenesis in health and disease. APMIS. 2004, 112(7–8), 481–495.
  • Panaro, M.A., Acquafredda, A., Sisto, M., et al., Evolution of a “conserved” amino acid sequence: A model study of an in silico investigation of the phylogenesis of some immune receptors. Curr Pharm Des. 2006, 12(32), 4091–4121.
  • Sharp, E.L., Farrell, H.E., Borchers, K., et al., Sequence analysis of the equid herpesvirus 2 chemokine receptor homologues E1, ORF74 and E6 demonstrates high sequence divergence between field isolates. J Gen Virol. 2007, 88(Pt 9), 2450–2462.
  • Beisser, P.S., Lavreysen, H., Bruggeman, C.A., Vink, C. Chemokines and chemokine receptors encoded by cytomegaloviruses. Curr Top Microbiol Immunol. 2008, 325, 221–242.
  • Medstrand, P., Mager, D.L., Yin, H., Dietrich, U., Blomberg, J. Structure and genomic organization of a novel human endogenous retrovirus family: HERV-K (HML-6). J Gen Virol. 1997, 78(Pt 7), 1731–1744.
  • Larsson, E., Andersson, G. Beneficial role of human endogenous retroviruses: Facts and hypotheses. Scand J Immunol. 1998, 48(4), 329–338.
  • Sverdlov, E.D. Perpetually mobile footprints of ancient infections in human genome. FEBS Lett. 1998, 428(1–2), 1–6.
  • Khodosevich, K., Lebedev, Y., Sverdlov, E. Endogenous retroviruses and human evolution. Comp Funct Genomics. 2002, 3(6), 494–498.
  • Nelson, P.N., Carnegie, P.R., Martin, J., et al., Demystified. Human endogenous retroviruses. Mol Pathol. 2003, 56(1), 11–18.
  • de Parseval, N., Heidmann, T. Human endogenous retroviruses: From infectious elements to human genes. Cytogenet. Genome Res. 2005, 110(1–4), 318–332.
  • Rot, A., von Andrian, U.H. Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annu Rev Immunol. 2004, 22, 891–928.
  • Esche, C., Stellato, C., Beck, L.A. Chemokines: Key players in innate and adaptive immunity. J. Invest. Dermatol. 2005, 125(4), 615–628.
  • Rajagopalan, L., Rajarathnam, K. Structural basis of chemokine receptor function - A model for binding affinity and ligand selectivity. Biosci Rep. 2006, 26(5), 325–339.
  • Rossi, D., Zlotnik, A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000, 18, 217–242.
  • Hartl, D., Lehmann, N., Hoffmann, F., et al., Dysregulation of innate immune receptors on neutrophils in chronic granulomatous disease. J Allergy Clin Immunol. 2008, 121(2), 375–382.e9.
  • Nazari, R., Joshi, S. CCR5 as target for HIV-1 gene therapy. Curr Gene Ther. 2008, 8(4), 264–272.
  • Mashino, K., Sadanaga, N., Yamaguchi, H., et al., Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res. 2002, 62(10), 2937–2941.
  • Murphy, K.M., Travers, P., Walport, M. Janeway’s Immunobiology (7th edition), Oxford, UK: Garland Science, 2007.
  • Förster, R., Schubel, A., Breitfeld, D., et al., CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell. 1999, 99(1), 23–33.
  • Höpken, U.E., Wengner, A.M., Loddenkemper, C., et al., CCR7 deficiency causes ectopic lymphoid neogenesis and disturbed mucosal tissue integrity. Blood. 2007, 109(3), 886–895.
  • Bromley, S.K., Thomas, S.Y., Luster, A.D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol. 2005, 6(9), 866–868.
  • Honda, K., Nakano, H., Yoshida, H., et al., Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med. 2001, 193(5), 621–630.
  • Ohl, L., Henning, G., Krautwald, S., et al., Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med. 2003, 197(9), 1199–204.
  • Kwan, J., Killeen, N. CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol. 2004, 172(7), 3999–4007.
  • Davalos-Misslitz, A.C., Rieckenberg, J., Willenzon, S., et al., Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur J Immunol. 2007, 37(3), 613–622.
  • Höpken, U.E., Achtman, A.H., Krüger, K., Lipp, M. Distinct and overlapping roles of CXCR5 and CCR7 in B-1 cell homing and early immunity against bacterial pathogens. J Leukoc Biol. 2004, 76(3), 709–718.
  • Schneider, M.A., Meingassner, J.G., Lipp, M., Moore, H.D., Rot, A. CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med. 2007, 204(4),735–745.
  • Muller, A., Homey, B., Soto, H., et al., Involvement of chemokine receptors in breast cancer metastasis. Nature (Lond.) 2001, 410(6824), 50–56.
  • Murphy, P.M. Chemokines and the molecular basis of cancer metastasis. N Engl J Med. 2001, 345(11), 833–835.
  • Schimanski, C.C., Schwald, S., Simiantonaki, N., et al., Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Cli. Cancer Res. 2005, 11(5), 1743–1750.
  • Mburu, Y.K., Wang, J., Wood, M.A., Walker, W.H., Ferris, R.L. CCR7 mediates inflammation-associated tumor progression. Immunol. Res. 2006, 36(1–3), 61–72.
  • Zlotnik, A. Chemokines and cancer. Int J Cancer. 2006, 119(9), 2026–2029.
  • Ishigami, S., Natsugoe, S., Nakajo, A., et al., Prognostic value of CCR7 expression in gastric cancer. Hepatogastroenterology, 2007, 54(76), 1025–1028.
  • Fang, L., Lee, V.C., Cha, E., Zhang, H., Hwang, S.T. CCR7 regulates B16 murine melanoma cell tumorigenesis in skin. J Leukoc Biol. 2008, 84(4), 965–972.
  • Yu, S., Duan, J., Zhou, Z., Pang, Q et al., critical role of CCR7 in invasiveness and metastasis of SW620 colon cancer cell in vitro and in vivo. Cancer Biol Ther. 2008, 7(7), 1037–1043.
  • Alfonso-Pérez, M., López-Giral, S., Quintana, N.E., et al., Anti-CCR7 monoclonal antibodies as a novel tool for the treatment of chronic lymphocyte leukemia. J Leukoc Biol. 2006, 79(6), 1157–1165.
  • Na, I.K., Busse, A., Scheibenbogen, C., et al., Identification of truncated chemokine receptor 7 in human colorectal cancer unable to localize to the cell surface and unreactive to external ligands. Int J Cancer. 2008, 123(7), 1565–1572.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.