141
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Reactive Oxygen Species (ROS): involvement in bovine follicular cysts etiopathogenesis

, , , , , & show all
Pages 631-635 | Received 20 Mar 2009, Accepted 30 Mar 2009, Published online: 30 Oct 2009

References

  • Lee, L.A., Ferguson, J.D., Galligan, D.J. The use of survival analysis to quantitate days open, advantages and implications. Acta Vet. Scand. 1988, 84, 433–435.
  • Borsberry, S., Dobson, H. Periparturient diseases and their effect on reproductive performance in five dairy herds. Vet. Rec. 1989, 124(9), 217–219.
  • Fourichon, C., Seegers, H., Malher, X. Effect of disease on reproduction in the dairy cow: A meta-analysis. Theriogenology 2000, 53(9), 1729–1759.
  • Garverick, H.A. Ovarian follicular cysts in dairy cows. J. Dairy Sci. 1997, 80(5), 995–1004.
  • Vanholder, T., Opsomer, G., de Kruif A. Aetiology and pathogenesis of cystic ovarian follicles in dairy cattle: A review. Reprod. Nutr. Dev. 2006, 46, 105–119.
  • Hamilton, S.A., Garverick, H.A., Keisler, D.H., et al. Characterization of ovarian follicular cysts and associated endocrine profiles in dairy cows. Biol. Reprod. 1995, 53(4), 890–898.
  • Calder, M.D., Manikkam, M., Salfen, B.E., et al. Dominant bovine ovarian follicular cysts express increased levels of messenger RNAs for luteinizing hormone receptor and 3β-hydroxysteroid dehydrogenase delta 4, delta 5 isomerase compared to normal dominant follicles. Biol. Reprod. 2001, 65(2), 471– 476.
  • Silvia, W.J.; Hatler, T.B.; Nugent, A.M., et al. Ovarian follicular cysts in dairy cows: An abnormality in folliculogenesis. Domest. Anim. Endocrinol. 2002, 23(1–2), 167–177.
  • Hatler, T.B., Hayes, S.H., de Fonseca L.F.L., Silvia, W.J. Relationship between endogenous progesterone and follicular dynamics in lactating dairy cows with ovarian follicular cysts. Biol. Reprod. 2003, 69(1), 218–223.
  • Kübar, H., Jalakas, M. Pathological changes in the reproductive organs of cows and heifer culled because of infertility. J. Vet. Med. A. Physiol. Pathol. Clin. Med. 2002, 49(7), 365–372.
  • Manca, R., Minoia, G., Mutinati, M., et al. Doppler evaluation of bovine follicular cysts after epidural GnRH administration. Reprod. Domest. Anim. 2007, 42(2), 117.
  • Rauch, A., Krüger, L., Miyamoto, A., Bollwein, H. Colour doppler sonography of cystic ovarian follicles in cows. J. Reprod. Dev. 2008, 54(6), 447–453.
  • Rizzo, A., Guaricci, A.C., Minoia, G., et al. Bovine renin gene expression in preovulatory follicles and cystic ovarian disease. Reprod. Domest. Anim. 2008, 43(3), 60–61.
  • Kawate, N., Inaba, T., Mori, J.A. Quantitative comparison in the bovine of steroids and gonadotropin receptors in normally developing follicles and in follicular and luteinized cysts. Anim. Reprod. Sci. 1990, 23(4), 273–281.
  • Wang, X.N., Greenwald, G.S. Synergistic effects of steroids with FSH on folliculogenesis, steroidogenesis and FSH- and hCG receptors in hypophysectomized mice. J. Reprod. Fertil. 1993, 99(2), 403–413.
  • Byers, M., Kuiper, G.G.J.M., Gustafsson, J-å,Park-Sarge, O.K., Estrogen receptor-β mRNA expression in rat ovary: Down-regulation by gonadotropins. Mol. Endocrinol. 1997, 11(2), 172–182.
  • Robker, R.L., Richards, J.S. Hormone-induced proliferation and differentiation of granulosa cells: A coordinated balance of the cell cycle regulators cyclin D2 and p27kip1. Mol. Endocrinol. 1998, 12(7), 924–940.
  • Odore, R., Re, G., Badino, P., et al. Modifications of receptor concentrations for adrenaline, steroid hormones, prostaglandin F2α and gonadotropins in hypophysis and ovary of dairy cows with ovarian cysts. Pharmacol. Res. 1999, 39(4), 297–304.
  • Rosenfeld, C.S., Yuan, X., Manikkam, M., et al. Cloning, sequencing, and localization of bovine estrogen receptor-β within the ovarian follicle. Biol. Reprod. 1999, 60(3), 691–697.
  • Robker, R.L., Russell, D.L., Yoshioka, S., et al.. Ovulation: a multi-gene, multi-step process. Steroids 2000, 65(10–11), 559–570.
  • Sciorsci, R.L., Lacalandra, G.M., D’amico, P., Minoia, R. et al.. Free radicals evaluation in serum of cows with follicular cysts. IX World Conference on Animal Production, 26–31 October 2003, Port Alegre-Rs-Brasil. p. 226.
  • Cinone, M., Robbe, D., Minoia, G., et al. Treatment of cystic ovarian disease in dairy cows with epidural administration of GnRH/calcium - naloxone association and PgF2α. Reprod. Domest. Anim. 2007, 42(4), 123.
  • Isobe, N. Follicular cysts in dairy cows. Anim. Sci. J. 2007, 78(1), 1–6.
  • Manca, R., Minoia, G., Spedicato, M., et al. Cisti follicolari nella bovina: somministrazione di lecirelina per via epidurale e valutazione della renina e della vascolarizzazione ovario. V National Congress SIRA, 17–19 May 2007, Alghero- Sassari (Italy). pp. 7–9.
  • Murdoch, W.J. Programmed cell death in preovulatory ovine follicles. Biol.Reprod. 1995, 53(1), 8–12.
  • Peter, A.T. An update on cystic ovarian degeneration in cattle. Reprod. Domest. Anim. 2004, 39(1), 1–7.
  • Shirai, F., Kawaguchi, M., Yutsudo, M., Dohi, Y. Human peripheral blood polymorphonuclear leukocytes at the ovulatory period are in an active state. Mol. Cell Endocrinol. 2002, 196(12), 21–28.
  • Fujii, J., Iuchi, Y., Okada, F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod. Biol. Endocrinol. 2005, 3, 43–53.
  • Rizzo, A., Roscino, M.T., Minoia, G., et al. Serum levels of reactive oxygen species (ROS) in the bitch.Immunopharmacol. Immunotoxicol. 2009, 23, 1–4.
  • Espey, L.L. Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol. Reprod. 1994, 50(2), 233–238.
  • Matousek, M., Mitsube, K., Mikuni, M., Brännström, M. Inhibition of ovulation in rat by a leukotriene B4 antagonist. Mol. Hum. Reprod. 2001, 7(1), 35–42.
  • Molskness, T.A., Stouffer, R.L., Burry, K.A., et al.Circulating levels of free and total vascular endothelial growth factor (VEGF)-A, soluble VEGF receptors-1 and -2, and angiogenin during ovarian stimulation in non-human primates and women. Hum. Reprod. 2004, 19(4), 822–830.
  • Gaytán, M., Bellido, C., Morales, C., et al. Effect of selective inhibition of cyclooxygenase and lipooxygenase pathway in follicle rupture and ovulation in the rat. Reproduction 2006, 132(4), 571–577.
  • Stouffer, R.L., Xu, F., Duffy, D.M. Molecular control of ovulation and luteinization in the primate follicle. Front. Biosci. 2007, 12, 297–307.
  • Yang, W.L., Godwin, A.K., Xu, X.X. Tumor Necrosis Factor-α-induced matrix proteolytic enzyme production and basement membrane remodeling by human ovarian surface epithelial cells: Molecular basis linking ovulation and cancer risk. Canc. Res. 2004, 64(4), 1534–1540.
  • Brannstrom, M., Bonello, N., Wang, L.J., Norman, R.J. Effects of tumor necrosis factor-alfa (TNF-alfa) on ovulation in the rat ovary. Reprod. Fertil. Dev. 1995, 7(1), 67–73.
  • Murdoch, W.J., Colgin, D.C., Ellis, J.A. Role of tumor necrosis factor-alfa in the ovulatory mechanism of ewes. J. Anim. Sci. 1997, 75(6), 1601–1605.
  • Terranova, P.F., Montgomery, R.V. Review: cytokine involvement in ovarian processes. Am. J. Reprod. Immunol. 1997, 37(1), 50–63.
  • Murdoch, W.J., McDonnel, A.C. Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction 2002, 123(6), 743–750.
  • Margalit, K.A., Cowan, R. G., Harman, R.M., Quirk, S.M. Apoptosis of bovine ovarian surface epithelial cells by Fas antigen/Fas ligand signaling. Reproduction 2005, 130(5), 751–758.
  • Cao, M., Buratini, J., Lussier, J.G., et al. Expression of protease nexin-1 and plasminogen activators during follicular growth and the periovulatory period in cattle. Reproduction 2006, 131(1), 125–137.
  • Murdoch, W.J., Gottsch, M.L. Proteolytic mechanisms in the ovulatory folliculo-luteal transformation. Connect. Tissue Res. 2003, 44(1), 50–57.
  • Bodmer, J.L., Schneider, P., Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 2002, 27(1), 19–26.
  • Pru, J.K., Lynch, M.P., Davis, J.S., Rueda, B.R. Signaling mechanisms in tumor necrosis factor alpha-induced death of microvascular endothelial cells of the corpus luteum. Reprod. Biol. Endocrinol. 2003, 1, 17–28.
  • Van den Dobbelsteen, D.J., Nobel, C.S., et al. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J. Biol. Chem. 1996, 271(26), 15420–15427.
  • Xin, X., Jiang-Hu, P., Akihito, N., et al. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J. Biol. Chem. 2005, 280(40), 33917–33925.
  • Peppelenbosch, M.P., Qiu, R.G., de Vries-Smits, A.M.M., et al. Rac mediates growth factor-induced arachidonic acid release. Cell 1995, 81(6), 849–856.
  • Sundaresan, M., Yu, Z.X., Ferrans, V.J., et al. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem. J. 1996, 318(2), 379–382.
  • Kim, B.C., Kim, J.H. Nuclear signaling by rac GTPase: Essential role of phospholipase A2. Biochem. J. 1997, 326(2), 333–337.
  • Woo, C.H., Lee, Z.W., et al. Involvement of cytosolic phospholipase A2, and the subsequent release of arachidonic acid, in signaling by rac for the generation of intracellular reactive oxygen species in rat-2 fibroblasts. Biochem. J. 2000, 348(3), 525–530.
  • Woo, C.H., Eom, Y.W., Yoo, M. H., et al. Tumor Necrosis Factor-α generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J. Biol. Chem. 2000, 275(41), 32357–32362.
  • Woo, C.H., You, H.J., Cho, S.H., et al.Leukotriene B4 stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. J. Biol. Chem. 2002, 277(10), 8572–8578.
  • Choi, J.A., Kim, E.Y., Song, H., et al. Reactive oxygen species are generated through a BLT2-linked cascade in Ras-transformed cells. Free Radic. Biol. Med. 2008, 44(4), 624–634.
  • Isobe, N., Yoshimura, Y. Deficient proliferation and apoptosis in the granulosa and theca interna cells of the bovine cystic follicle. J. Reprod. Dev. 2007, 53(5), 1119–1124.
  • Murdoch, W.J. Proteolitic and cellular death mechanisms in ovulatory ovarian rupture. Biol. Signals Recept. 2000, 9(2), 102–114.
  • Chun, S,Y,, Hsueh A.J. Paracrine mechanisms of ovarian follicle apoptosis. J. Reprod. Immunol. 1998, 39(1–2), 63–75.
  • Imai, K., Khandoker, M.A., Yonai, M., et al.. Matrix metalloproteinases-2 and -9 activities in bovine follicular fluid of different-sized follicles: relationship to intra-follicular inhibin and steroid concentrations. Domest. Anim. Endocrinol. 2003, 24 (2), 171–183.
  • Tyagi, S.C., Ratajska, A., Weber, K.T. Myocardial matrix metalloproteinase(s): Localization and activation. Mol. Cell. Biochem. 1993, 126(1), 49–59.
  • Tyagi, S.C., Kumas, S., Glover, G. Induction of tissue inhibitor and matrix metalloproteinase by serum in human heart-derived fibroblast and endomyocardial endothelial cells. J. Cell. Biochem. 1995, 58(3), 260–371.
  • Galli, A., Svegliati-Baroni, G., Dilani, S., et al. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 2005, 41(5), 1074–1084.
  • Lu, Y., Wahl, L.M. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J. Immunol. 2005, 175(8), 5423–5429.
  • Valentin, F., Bueb, J.L., Kieffer, P., et al. Oxidative stress activates MMP-2 in cultured human coronary smooth muscle cells. Fundam. Clin. Pharmacol. 2005, 19(6), 661–667.
  • Bittner, A., Alcaíno, H., Castro, P.F., et al. Matrix metalloproteinase-9 activity is associated to oxidative stress in patients with acute coronary syndrome. Int. J. Cardiol. 2009, doi: 10.1016/j.ijcard.2008.11.188
  • Castro, M.M., Rizzi, E., Rodrigues, G.J., et al. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation. Free Radic. Biol. Med. 2009, 46(9), 1298–1307.
  • Nordberg, J., Arnér, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31(11), 1287–1312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.