160
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Immunopharmacological role of the Leukotriene Receptor Antagonists and inhibitors of leukotrienes generating enzymes in Multiple Sclerosis

&
Pages 219-227 | Received 02 Aug 2009, Accepted 24 Aug 2009, Published online: 19 Mar 2010

References

  • Kulkarni AP, Kellaway LA, Lahiri DK, Kotwal GJ.Neuroprotection from complement-mediated inflammatory damage. Ann N Y Acad Sci 2004; Dec; 1035:147–64.
  • van d, V De, Groot CJ. Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 2000; Feb;26(1):2–10.
  • Nijeholt GJ. Reduction of brain volume in MS. MRI and pathology findings. J Neurol Sci 2005; Jun 15;233(1–2):199–202.
  • Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006; Aug;129(Pt 8):1953–71.
  • Andersson A, Karlsson J. Genetics of experimental autoimmune encephalomyelitis in the mouse. Arch Immunol Ther Exp (Warsz) 2004; Sep;52(5):316–25.
  • Neu I, Mallinger J, Wildfeuer A, Mehlber L. Leukotrienes in the cerebrospinal fluid of multiple sclerosis patients. Acta Neurol Scand 1992; Dec;86(6):586–7.
  • Neu IS, Metzger G, Zschocke J, Zelezny R, Mayatepek E. Leukotrienes in patients with clinically active multiple sclerosis. Acta Neurol Scand 2002; Jan;105(1):63–6.
  • Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992;10:153–87.
  • Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet 2008; Jul;9(7):516–26.
  • Pergola C, Dodt G, Rossi A, et al.ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci U S A 2008; Dec 16;105(50):19881–6.
  • Evangelou N, Jackson M, Beeson D, Palace J. Association of the APOE epsilon4 allele with disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 1999; Aug;67(2):203–5.
  • Haines JL, Ter-Minassian M, Bazyk A, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996; Aug;13(4):469–71.
  • Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009;31(1):13–29.
  • Myhr KM, Raknes G, Nyland H, Vedeler C. Immunoglobulin G Fc-receptor (FcgammaR) IIA and IIIB polymorphisms related to disability in MS. Neurology 1999; Jun 10;52(9):1771–6.
  • Sadovnick AD, Dyment D, Ebers GC. Genetic epidemiology of multiple sclerosis. Epidemiol Rev 1997;19(1):99–106.
  • Fernandez O, Fernandez V, Alonso A, et al. DQB1*0602 allele shows a strong association with multiple sclerosis in patients in Malaga, Spain. J Neurol 2004; Apr;251(4):440–4.
  • Barcellos LF, Oksenberg JR, Green AJ, et al. Genetic basis for clinical expression in multiple sclerosis. Brain 2002; Jan;125(Pt 1):150–8.
  • Schmidt H, Williamson D, Ashley-Koch A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol 2007; May 15;165(10):1097–109.
  • Sospedra M, Muraro PA, Stefanova I, et al. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. J Immunol 2006; Feb 1;176(3):1951–61.
  • DeLuca GC, Ramagopalan SV, Herrera BM, et al.An extreme of outcome strategy provides evidence that multiple sclerosis severity is determined by alleles at the HLA-DRB1 locus. Proc Natl Acad Sci U S A 2007; Dec 26;104(52):20896–901.
  • Hutter C. On the causes of multiple sclerosis. Med Hypotheses 1993; Aug;41(2):93–6.
  • Hutter CD, Laing P. Multiple sclerosis: sunlight, diet, immunology and aetiology. Med Hypotheses 1996; Feb;46(2):67–74.
  • Lucchinetti CF, Mandler RN, McGavern D, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 2002; Jul;125(Pt 7):1450–61.
  • Gallai V, Sarchielli P, Trequattrini A, et al. Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J Neuroimmunol 1995; Feb;56(2):143–53.
  • Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002; Dec;21(6):495–505.
  • Zamaria N. Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod Nutr Dev 2004; May;44(3):273–82.
  • Alcaro MC, Papini AM. Contribution of peptides to multiple sclerosis research. Biopolymers 2006;84(4):349–67.
  • Bar-Or A. Human immune studies in multiple sclerosis. Adv Neurol 2006;98:91–109.
  • Birnbaum G. Making the diagnosis of multiple sclerosis. Adv Neurol 2006;98:111–24.
  • Goldman MD, Cohen JA, Fox RJ, Bethoux FA. Multiple sclerosis: treating symptoms, and other general medical issues. Cleve Clin J Med 2006; Feb;73(2):177–86.
  • Mirshafiey A. Venom therapy in multiple sclerosis. Neuropharmacology 2007; Sep;53(3):353–61.
  • Inglese M. Multiple sclerosis: new insights and trends. AJNR Am J Neuroradiol 2006; May;27(5):954–7.
  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; Jun;47(6):707–17.
  • Bjartmar C, Wujek JR, Trapp BD. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 2003; Feb 15;206(2):165–71.
  • Neumann H, Medana IM, Bauer J, Lassmann H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 2002; Jun;25(6):313–9.
  • Redford EJ, Smith KJ, Gregson NA, et al. A combined inhibitor of matrix metalloproteinase activity and tumour necrosis factor-alpha processing attenuates experimental autoimmune neuritis. Brain 1997; Oct;120 ( Pt 10):1895–905.
  • Babbe H, Roers A, Waisman A, et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 2000; Aug 7;192(3):393–404.
  • Jacobsen M, Cepok S, Quak E, et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 2002; Mar;125(Pt 3):538–50.
  • Lafaille JJ, Keere FV, Hsu AL, et al. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 1997; Jul 21;186(2):307–12.
  • Stefferl A, Brehm U, Storch M, et al. Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the “resistant” Brown Norway rat: disease susceptibility is determined by MHC and MHC-linked effects on the B cell response. J Immunol 1999; Jul 1;163(1):40–9.
  • Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007; Apr;8(4):345–50.
  • Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP, Marusic S. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol 2007; Feb 15;178(4):2589–98.
  • Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogeneous dysfunction and damage. Curr Opin Neurol 2003; Jun;16(3):259–65.
  • Peterson LK, Fujinami RS. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol 2007; Mar;184(1–2):37–44.
  • Silber E, Sharief MK. Axonal degeneration in the pathogenesis of multiple sclerosis. J Neurol Sci 1999; Nov 15;170(1):11–8.
  • Constam DB, Philipp J, Malipiero UV, ten DP, Schachner M, Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 1992; Mar 1;148(5):1404–10.
  • Huan J, Culbertson N, Spencer L, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 2005; Jul 1;81(1):45–52.
  • Barnstein BO, Li G, Wang Z, et al. Stat5 expression is required for IgE-mediated mast cell function. J Immunol 2006; Sep 1;177(5):3421–6.
  • Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 2003; Aug;9(4):323–31.
  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005; Nov;128(Pt 11):2705–12.
  • Pulizzi A, Rovaris M, Judica E, et al. Determinants of disability in multiple sclerosis at various disease stages: a multiparametric magnetic resonance study. Arch Neurol 2007; Aug;64(8):1163–8.
  • Sellebjerg F, Jaliashvili I, Christiansen M, Garred P. Intrathecal activation of the complement system and disability in multiple sclerosis. J Neurol Sci 1998; May 7;157(2):168–74.
  • van HJ, Schreibelt G, Bo L, et al. NAD(P)H:quinone oxidoreductase 1 expression in multiple sclerosis lesions. Free Radic Biol Med 2006; Jul 15;41(2):311–7.
  • Derwenskus J, Lublin FD. Use of interferon-beta in the treatment of multiple sclerosis. Adv Neurol 2006;98:257–71.
  • Goodin DS.Treatment of multiple sclerosis with human beta interferon. Int MS J 2005; Nov;12(3):96–108.
  • Milligan NM, Newcombe R, Compston DA. A double-blind controlled trial of high dose methylprednisolone in patients with multiple sclerosis: 1. Clinical effects. J Neurol Neurosurg Psychiatry 1987; May;50(5):511–6.
  • Mirshafiey A, Saadat F, Attar M, Di PR, Sedaghat R, Cuzzocrea S. Design of a new line in treatment of experimental rheumatoid arthritis by artesunate. Immunopharmacol Immunotoxicol 2006;28(3):397–410.
  • Stangel M, Gold R, Gass A, et al. Current issues in immunomodulatory treatment of multiple sclerosis—a practical approach. J Neurol 2006; Feb;253 Suppl 1:I32–I36.
  • Bailie MB, Standiford TJ, Laichalk LL, Coffey MJ, Strieter R, Peters-Golden M. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J Immunol 1996; Dec 15;157(12):5221–4.
  • Benjamin CF, Canetti C, Cunha FQ, Kunkel SL, Peters-Golden M. Opposing and hierarchical roles of leukotrienes in local innate immune versus vascular responses in a model of sepsis. J Immunol 2005; Feb 1;174(3):1616–20.
  • DeWitt DL. Cox-2-selective inhibitors: the new super aspirins. Mol Pharmacol 1999; Apr;55(4):625–31.
  • Ferreira SH, Moncada S, Vane JR. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nat New Biol 1971; Jun 23;231(25):237–9.
  • Gijon MA, Spencer DM, Kaiser AL, Leslie CC. Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A2. J Cell Biol 1999; Jun 14;145(6):1219–32.
  • Nalefski EA, Sultzman LA, Martin DM, et al. Delineation of two functionally distinct domains of cytosolic phospholipase A2, a regulatory Ca(2+)-dependent lipid-binding domain and a Ca(2+)-independent catalytic domain. J Biol Chem 1994; Jul 8;269(27):18239–49.
  • Parente L. Pros and cons of selective inhibition of cyclooxygenase-2 versus dual lipoxygenase/cyclooxygenase inhibition: is two better than one? J Rheumatol 2001; Nov;28(11):2375–82.
  • Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 1987; Sep 4;237(4819):1171–6.
  • Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 1996; Dec 27;271(52):33157–60.
  • Dixon RA, Jones RE, Diehl RE, Bennett CD, Kargman S, Rouzer CA.Cloning of the cDNA for human 5-lipoxygenase. Proc Natl Acad Sci U S A 1988; Jan;85(2):416–20.
  • Matsumoto T, Funk CD, Radmark O, Hoog JO, Jornvall H, Samuelsson B. Molecular cloning and amino acid sequence of human 5-lipoxygenase. Adv Prostaglandin Thromboxane Leukot Res 1989; 19:466–9.
  • Samuelsson B, Funk CD. Enzymes involved in the biosynthesis of leukotriene B4. J Biol Chem 1989; Nov 25;264(33):19469–72.
  • Funk CD, Chen XS, Johnson EN, Zhao L. Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 2002; Aug;68–69:303–12.
  • Kuhn H, Walther M, Kuban RJ. Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications. Prostaglandins Other Lipid Mediat 2002; Aug;68–69:263–90.
  • Michel AA, Steinhilber D, Werz O. Development of a method for expression and purification of the regulatory C2-like domain of human 5-lipoxygenase. Protein Expr Purif 2008; May;59(1):110–6.
  • Maas RL, Ingram CD, Taber DF, Oates JA, Brash AR. Stereospecific removal of the DR hydrogen atom at the 10-carbon of arachidonic acid in the biosynthesis of leukotriene A4 by human leukocytes. J Biol Chem 1982; Nov 25;257(22):13515–9.
  • Panossian A, Hamberg M, Samuelsson B. On the mechanism of biosynthesis of leukotrienes and related compounds. FEBS Lett 1982; Dec 27;150(2):511–3.
  • Radmark O, Malmsten C, Samuelsson B, et al. Leukotriene A: stereochemistry and enzymatic conversion to leukotriene B. Biochem Biophys Res Commun 1980; Feb 12;92(3):954–61.
  • Shimizu T, Radmark O, Samuelsson B.Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci U S A 1984; Feb;81(3):689–93.
  • Abramovitz M, Wong E, Cox ME, Richardson CD, Li C, Vickers PJ. 5-lipoxygenase-activating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase. Eur J Biochem 1993; Jul 1;215(1):105–11.
  • Kargman S, Rousseau P, Reid GK, et al. Leukotriene synthesis in U937 cells expressing recombinant 5-lipoxygenase. J Lipid Mediat 1993; May;7(1):31–45.
  • Coffey M, Peters-Golden M, Fantone JC III, Sporn PH. Membrane association of active 5-lipoxygenase in resting cells. Evidence for novel regulation of the enzyme in the rat alveolar macrophage. J Biol Chem 1992; Jan 5;267(1):570–6.
  • Mancini JA, Abramovitz M, Cox ME, et al. 5-lipoxygenase-activating protein is an arachidonate binding protein. FEBS Lett 1993; Mar 8;318(3):277–81.
  • Woods JW, Coffey MJ, Brock TG, Singer II, Peters-Golden M. 5-Lipoxygenase is located in the euchromatin of the nucleus in resting human alveolar macrophages and translocates to the nuclear envelope upon cell activation. J Clin Invest 1995; May;95(5):2035–46.
  • Brock TG, Paine R, III, Peters-Golden M. Localization of 5-lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J Biol Chem 1994; Sep 2;269(35):22059–66.
  • Peters-Golden M, McNish RW. Redistribution of 5-lipoxygenase and cytosolic phospholipase A2 to the nuclear fraction upon macrophage activation. Biochem Biophys Res Commun 1993; Oct 15;196(1):147–53.
  • Woods JW, Evans JF, Ethier D, et al. 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med 1993; Dec 1;178(6):1935–46.
  • Aharony D, Stein RL. Kinetic mechanism of guinea pig neutrophil 5-lipoxygenase. J Biol Chem 1986; Sep 5;261(25):11512–9.
  • Brideau C, Chan C, Charleson S, et al. Pharmacology of MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)- indol-2-yl]-2,2-dimethyl propanoic acid), a potent, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol 1992; Jun;70(6):799–807.
  • Clark SR, Coffey MJ, Maclean RM, et al. Characterization of nitric oxide consumption pathways by normal, chronic granulomatous disease and myeloperoxidase-deficient human neutrophils. J Immunol 2002; Nov 15;169(10):5889–96.
  • Furukawa M, Yoshimoto T, Ochi K, Yamamoto S. Studies on arachidonate 5-lipoxygenase of rat basophilic leukemia cells. Biochim Biophys Acta 1984; Oct 4;795(3):458–65.
  • Hogaboom GK, Cook M, Newton JF, et al. Purification, characterization, and structural properties of a single protein from rat basophilic leukemia (RBL-1) cells possessing 5-lipoxygenase and leukotriene A4 synthetase activities. Mol Pharmacol 1986; Dec;30(6):510–9.
  • Radmark O. Arachidonate 5-lipoxygenase. Prostaglandins Other Lipid Mediat 2002; Aug;68–69:211–34.
  • Riendeau D, Falgueyret JP, Guay J, Ueda N, Yamamoto S.Pseudoperoxidase activity of 5-lipoxygenase stimulated by potent benzofuranol and N-hydroxyurea inhibitors of the lipoxygenase reaction. Biochem J 1991; Feb 15;274 ( Pt 1):287–92.
  • Rouzer CA, Matsumoto T, Samuelsson B.Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci U S A 1986; Feb;83(4):857–61.
  • Chang WC, Nelson C, Parekh AB.Ca2++ influx through CRAC channels activates cytosolic phospholipase A2, leukotriene C4 secretion, and expression of c-fos through ERK-dependent and -independent pathways in mast cells. FASEB J 2006; Nov;20(13):2381–3.
  • Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ. cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993; Jan 29;72(2):269–78.
  • Rosado JA, Sage SO. Role of the ERK pathway in the activation of store-mediated calcium entry in human platelets. J Biol Chem 2001; May 11;276(19):15659–65.
  • Schonwasser DC, Marais RM, Marshall CJ, Parker PJ. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 1998; Feb;18(2):790–8.
  • Leslie CC. Properties and regulation of cytosolic phospholipase A2. J Biol Chem 1997; Jul 4;272(27):16709–12.
  • Reynolds LJ, Hughes LL, Louis AI, Kramer RM, Dennis EA. Metal ion and salt effects on the phospholipase A2, lysophospholipase, and transacylase activities of human cytosolic phospholipase A2. Biochim Biophys Acta 1993; Apr 23;1167(3):272–80.
  • Dai H, Huang W, Xu J, et al. Binding model of human coactosin-like protein with filament actin revealed by mutagenesis. Biochim Biophys Acta 2006; Nov;1764(11):1688–700.
  • Rakonjac M, Fischer L, Provost P, et al.Coactosin-like protein supports 5-lipoxygenase enzyme activity and up-regulates leukotriene A4 production. Proc Natl Acad Sci U S A 2006; Aug 29;103(35):13150–5.
  • Lam BK. Leukotriene C4 synthase: a critical enzyme for the biosynthesis of SRS-A. Front Biosci 1997; Jul 15;2:d380–d386.
  • Lam BK. Leukotriene C(4) synthase. Prostaglandins Leukot Essent Fatty Acids 2003; Aug;69(2–3):111–6.
  • Lewis RA, Austen KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 1990; Sep 6;323(10):645–55.
  • Ma KF, Yang HY, Chen Z, Qi LY, Zhu DY, Lou YJ. Enhanced expressions and activations of leukotriene C4 synthesis enzymes in D-galactosamine/lipopolysaccharide-induced rat fulminant hepatic failure model. World J Gastroenterol 2008; May 7;14(17):2748–56.
  • Penrose JF, Spector J, Lam BK, et al. Purification of human lung leukotriene C4 synthase and preparation of a polyclonal antibody. Am J Respir Crit Care Med 1995; Jul;152(1):283–9.
  • Penrose JF. LTC4 synthase. Enzymology, biochemistry, and molecular characterization. Clin Rev Allergy Immunol 1999;17(1–2):133–52.
  • Sjostrom M, Jakobsson PJ, Juremalm M, et al. Human mast cells express two leukotriene C(4) synthase isoenzymes and the CysLT(1) receptor. Biochim Biophys Acta 2002; Jun 13;1583(1):53–62.
  • Bernstrom K, Orning L, Hammarstrom S. Gamma-Glutamyl transpeptidase, a leukotriene metabolizing enzyme. Methods Enzymol 1982;86:38–45.
  • Nagaoka I, Yamashita T. Conversion of leukotriene C4 to leukotriene D4 by a cell-surface enzyme of rat macrophages. Biochem Biophys Res Commun 1987; Aug 31;147(1):282–7.
  • Inamura T, Pardridge WM, Kumagai Y, Black KL. Differential tissue expression of immunoreactive dehydropeptidase I, a peptidyl leukotriene metabolizing enzyme. Prostaglandins Leukot Essent Fatty Acids 1994; Feb;50(2):85–92.
  • Nagaoka I, Yamashita T. Studies on the leukotriene D4-metabolizing enzyme of rat leukocytes, which catalyzes the conversion of leukotriene D4 to leukotriene E4. Biochim Biophys Acta 1987; Oct 31;922(1):8–17.
  • Nagaoka I, Yamada M, Kira S, Yamashita T. Comparative studies on the leukotriene D4-metabolizing enzyme of different types of leukocytes. Comp Biochem Physiol B 1988;89(2):375–80.
  • Raulf M, Konig W, Koller M, Stuning M. Release and functional characterization of the leukotriene D4-metabolizing enzyme (dipeptidase) from human polymorphonuclear leucocytes. Scand J Immunol 1987; Mar;25(3):305–13.
  • Haeggstrom JZ, Kull F, Rudberg PC, Tholander F, Thunnissen MM. Leukotriene A4 hydrolase. Prostaglandins Other Lipid Mediat 2002; Aug;68–69:495–510.
  • Amat M, Diaz C, Vila L. Leukotriene A4 hydrolase and leukotriene C4 synthase activities in human chondrocytes: transcellular biosynthesis of Leukotrienes during granulocyte-chondrocyte interaction. Arthritis Rheum 1998; Sep; 41(9):1645–51.
  • Feinmark SJ, Cannon PJ. Vascular smooth muscle cell leukotriene C4 synthesis: requirement for transcellular leukotriene A4 metabolism. Biochim Biophys Acta 1987; Nov 21;922(2):125–35.
  • Maclouf J, Antoine C, Henson PM, Murphy RC. Leukotriene C4 formation by transcellular biosynthesis. Ann N Y Acad Sci 1994; Apr 18;714:143–50.
  • Maclouf J, Sala A, Rossoni G, Berti F, Muller-Peddinghaus R, Folco G. Consequences of transcellular biosynthesis of leukotriene C4 on organ function. Haemostasis 1996; Oct;26 Suppl 4:28–36.
  • Maclouf JA, Murphy RC. Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4. J Biol Chem 1988; Jan 5;263(1):174–81.
  • Marcus AJ, Broekman MJ, Safier LB, et al. Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem Biophys Res Commun 1982; Nov 16;109(1):130–7.
  • Ciana P, Fumagalli M, Trincavelli ML, et al.The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 2006; Oct 4;25(19):4615–27.
  • Lynch KR, O’Neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999; Jun 24;399(6738):789–93.
  • Nothacker HP, Wang Z, Zhu Y, Reinscheid RK, Lin SH, Civelli O. Molecular cloning and characterization of a second human cysteinyl leukotriene receptor: discovery of a subtype selective agonist. Mol Pharmacol 2000; Dec;58(6):1601–8.
  • Takasaki J, Kamohara M, Matsumoto M, et al. The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT(2) receptor. Biochem Biophys Res Commun 2000; Aug 2;274(2):316–22.
  • Figueroa DJ, Breyer RM, Defoe SK, et al. Expression of the cysteinyl leukotriene 1; receptor in normal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med 2001; Jan;163(1):226–33.
  • Hui Y, Funk CD. Cysteinyl leukotriene receptors. Biochem Pharmacol 2002; Dec 1;64(11):1549–57.
  • Lotzer K, Spanbroek R, Hildner M, et al. Differential leukotriene receptor expression and calcium responses in endothelial cells and macrophages indicate 5-lipoxygenase-dependent circuits of inflammation and atherogenesis. Arterioscler Thromb Vasc Biol 2003; Aug 1;23(8):e32–e36.
  • Mellor EA, Maekawa A, Austen KF, Boyce JA.Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci U S A 2001; Jul 3;98(14):7964–9.
  • Sarau HM, Ames RS, Chambers J, et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol Pharmacol 1999; Sep;56(3):657–63.
  • Nielsen CK, Campbell JI, Ohd JF, et al. A novel localization of the G-protein-coupled CysLT1 receptor in the nucleus of colorectal adenocarcinoma cells. Cancer Res 2005; Feb 1;65(3):732–42.
  • Heise CE, O’Dowd BF, Figueroa DJ, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000; Sep 29;275(39):30531–6.
  • Sjostrom M, Johansson AS, Schroder O, Qiu H, Palmblad J, Haeggstrom JZ. Dominant expression of the CysLT2 receptor accounts for calcium signaling by cysteinyl leukotrienes in human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 2003; Aug 1;23(8):e37–e41.
  • Lecca D, Trincavelli ML, Gelosa P, et al. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS ONE 2008;3(10): e3579.
  • Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM. Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors. Cell Signal 2000; Jun;12(6):351–60.
  • Stucky CL, Medler KA, Molliver DC. The P2Y agonist UTP activates cutaneous afferent fibers. Pain 2004; May;109(1–2):36–44.
  • Abbracchio MP, Boeynaems JM, Barnard EA, et al. Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 2003; Feb;24(2):52–5.
  • Communi D, Parmentier M, Boeynaems JM. Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun 1996; May 15;222(2):303–8.
  • Haynes SE, Hollopeter G, Yang G, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006; Dec;9(12):1512–9.
  • Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 2007; Apr 26;446(7139):1091–5.
  • Korcok J, Raimundo LN, Du X, Sims SM, Dixon SJ. P2Y6 nucleotide receptors activate NF-kappaB and increase survival of osteoclasts. J Biol Chem 2005; Apr 29;280(17):16909–15.
  • Osipchuk Y, Cahalan M. Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 1992; Sep 17;359(6392):241–4.
  • Warny M, Aboudola S, Robson SC, et al. P2Y(6) nucleotide receptor mediates monocyte interleukin-8 production in response to UDP or lipopolysaccharide. J Biol Chem 2001; Jul 13;276(28):26051–6.
  • Back M, Bu DX, Branstrom R, Sheikine Y, Yan ZQ, Hansson GK.Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci U S A 2005; Nov 29;102(48):17501–6.
  • Lundeen KA, Sun B, Karlsson L, Fourie AM. Leukotriene B4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J Immunol 2006; Sep 1;177(5):3439–47.
  • Nicolete R, Rius C, Piqueras L, et al. Leukotriene B4-loaded microspheres: a new therapeutic strategy to modulate cell activation. BMC Immunol 2008; Jul 15;9:36.
  • Qiu H, Johansson AS, Sjostrom M, et al.Differential induction of BLT receptor expression on human endothelial cells by lipopolysaccharide, cytokines, and leukotriene B4. Proc Natl Acad Sci U S A 2006; May 2;103(18):6913–8.
  • Subbarao K, Jala VR, Mathis S, et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol 2004; Feb;24(2):369–75.
  • Tager AM, Bromley SK, Medoff BD, et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat Immunol 2003; Oct;4(10):982–90.
  • Toda A, Yokomizo T, Shimizu T. Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat 2002; Aug;68–69:575–85.
  • Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W. The PPAR alpha-leukotriene B4 pathway to inflammation control. Nature 1996; Nov 7;384(6604):39–43.
  • Peres CM, Aronoff DM, Serezani CH, Flamand N, Faccioli LH, Peters-Golden M. Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. J Immunol 2007; Oct 15;179(8):5454–61.
  • Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 2007; Nov 1;110(9):3263–70.
  • Drazen JM, Israel E, O’Byrne PM. Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 1999; Jan 21;340(3):197–206.
  • Drazen JM, Austen KF. Leukotrienes and airway responses. Am Rev Respir Dis 1987; Oct;136(4):985–98.
  • Moos MP, Mewburn JD, Kan FW, et al.Cysteinyl leukotriene 2 receptor-mediated vascular permeability via transendothelial vesicle transport. FASEB J 2008; Dec;22(12):4352–62.
  • Ito Y, Hirano M, Umemoto N, et al. Guinea pig cysteinyl leukotriene receptor 2 (gpCysLT2) mediates cell proliferation and intracellular calcium mobilization by LTC4 and LTD4. BMB Rep 2008 Feb 29;41(2):139–45.
  • Woszczek G, Chen LY, Nagineni S, et al. IFN-gamma induces cysteinyl leukotriene receptor 2 expression and enhances the responsiveness of human endothelial cells to cysteinyl leukotrienes. J Immunol 2007 Apr 15;178(8):5262–70.
  • Simmons PM, Salmon JA, Moncada S. The release of leukotriene B4 during experimental inflammation. Biochem Pharmacol 1983; Apr 15;32(8):1353–9.
  • Mancuso P, Nana-Sinkam P, Peters-Golden M. Leukotriene B4 augments neutrophil phagocytosis of Klebsiella pneumoniae. Infect Immun 2001; Apr;69(4):2011–6.
  • Peres CM, de Paula L, Medeiros AI, Sorgi CA, Soares EG, Carlos D, Peters-Golden M, Faccioli LH. Inhibition of leukotriene biosynthesis abrogates the host control of Mycobacterium tuberculosis. Microbes Infect 2007; Apr;9(4):483–9.
  • Vaddi K, Newton RC. Regulation of monocyte integrin expression by beta-family chemokines. J Immunol 1994; Nov 15;153(10):4721–32.
  • Flamand L, Tremblay MJ, Borgeat P. Leukotriene B4 triggers the in vitro and in vivo release of potent antimicrobial agents. J Immunol 2007; Jun 15;178(12):8036–45.
  • Wan M, Sabirsh A, Wetterholm A, Agerberth B, Haeggstrom JZ.Leukotriene B4 triggers release of the cathelicidin LL-37 from human neutrophils: novel lipid-peptide interactions in innate immune responses. FASEB J 2007; Sep;21(11):2897–905.
  • Rosnowska M, Cendrowski W, Sobczyk W. [Leukotrienes B4 and C4 in cerebrospinal of patients with multiple sclerosis]. Pol Merkur Lekarski 1997; Apr;2(10):254–5.
  • Whitney LW, Ludwin SK, McFarland HF, Biddison WE. Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J Neuroimmunol 2001; Dec 3;121(1–2):40–8.
  • Uz T, Dimitrijevic N, Tueting P, Manev H. 5-lipoxygenase (5LOX)-deficient mice express reduced anxiety-like behavior. Restor Neurol Neurosci 2002;20(1–2):15–20.
  • Barnes NC, de JB, Miyamoto T. Worldwide clinical experience with the first marketed leukotriene receptor antagonist. Chest 1997; Feb;111(2 Suppl):52S–60S.
  • Dempsey OJ.Leukotriene receptor antagonist therapy. Postgrad Med J 2000; Dec;76(902):767–73.
  • Kuperman AV, Kalgutkar AS, Marfat A, Chambers RJ, Liston TE. Pharmacokinetics and metabolism of a cysteinyl leukotriene-1 receptor antagonist from the heterocyclic chromanol series in rats: in vitro-in vivo correlation, gender-related differences, isoform identification, and comparison with metabolism in human hepatic tissue. Drug Metab Dispos 2001; Nov;29(11):1403–9.
  • McDanel DL, Muller BA. The linkage between Churg-Strauss syndrome and leukotriene receptor antagonists: fact or fiction? Ther Clin Risk Manag 2005; Jun;1(2):125–40.
  • Okudaira H. Challenge studies of a leukotriene receptor antagonist. Chest 1997; Feb;111(2 Suppl):46S–51S.
  • Rodger IW. From bench to bedside. The hurdles of discovering a new leukotriene receptor antagonist. Am J Respir Crit Care Med 2000; Feb; 161(2 Pt 2):S7–S10.
  • Marusic S, Thakker P, Pelker JW, et al. Blockade of cytosolic phospholipase A2 alpha prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses. J Neuroimmunol 2008; Nov 15;204(1–2):29–37.
  • Payne SG, Oskeritzian CA, Griffiths R, et al. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 2007; Feb 1;109(3):1077–85.
  • Kirkland TA, Adler M, Bauman JG, et al. Synthesis of glutamic acid analogs as potent inhibitors of leukotriene A4 hydrolase. Bioorg Med Chem 2008; May 1;16(9):4963–83.
  • Prosiegel M, Neu I, Vogl S, Hoffmann G, Wildfeuer A, Ruhenstroth-Bauer G. Suppression of experimental autoimmune encephalomyelitis by sulfasalazine. Acta Neurol Scand 1990; Mar;81(3):237–8.
  • Fretland DJ, Widomski DL, Shone RL, Levin S, Gaginella TS. Effect of the leukotriene B4 receptor antagonist, SC-41930, on experimental allergic encephalomyelitis (EAE) in the guinea pig. Agents Actions 1991; Sep; 34(1–2):172–4.
  • Gladue RP, Carroll LA, Milici AJ, et al. Inhibition of leukotriene B4-receptor interaction suppresses eosinophil infiltration and disease pathology in a murine model of experimental allergic encephalomyelitis. J Exp Med 1996; Apr 1;183(4):1893–8.
  • Liston TE, Conklyn MJ, Houser J, et al. Pharmacokinetics and pharmacodynamics of the leukotriene B4 receptor antagonist CP-105,696 in man following single oral administration. Br J Clin Pharmacol 1998; Feb; 45(2):115–21.
  • Marder P, Spaethe SM, Froelich LL, et al. Inhibition of ex vivo neutrophil activation by oral LY293111, a novel leukotriene B4 receptor antagonist. Br J Clin Pharmacol 1996; Oct; 42(4):457–64.
  • Showell HJ, Conklyn MJ, Alpert R, et al. The preclinical pharmacological profile of the potent and selective leukotriene B4 antagonist CP-195543. J Pharmacol Exp Ther 1998; Jun; 285(3):946–54.
  • Birke FW, Meade CJ, Anderskewitz R, Speck GA, Jennewein HM. In vitro and in vivo pharmacological characterization of BIIL 284, a novel and potent leukotriene B(4) receptor antagonist. J Pharmacol Exp Ther 2001; Apr; 297(1):458–66.
  • Emerson MR, LeVine SM. Experimental allergic encephalomyelitis is exacerbated in mice deficient for 12/15-lipoxygenase or 5-lipoxygenase. Brain Res 2004; Sep 17;1021(1):140–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.