560
Views
50
CrossRef citations to date
0
Altmetric
Review Article

The promise of glycomics, glycan arrays and carbohydrate-based vaccines

&
Pages 196-207 | Received 16 Jul 2009, Accepted 27 Aug 2009, Published online: 09 Feb 2010

References

  • Paulson JC, Blixt O, Collins BE. Sweet spots in functional glycomics. Nat Chem Biol 2006; 2(5): 238–48.
  • Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1999; 1473(1): 4–8.
  • van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 2008; 9(6): 593–601.
  • Sears P, Wong CH. Toward automated synthesis of oligosaccharides and glycoproteins. Science 2001; 291(5512): 2344–50.
  • Plante OJ, Palmacci ER, Seeberger PH. Automated solid-phase synthesis of oligosaccharides. Science 2001; 291(5508): 1523–7.
  • Plante OJ, Seeberger PH. Recent advances in automated solid-phase carbohydrate synthesis: from screening to vaccines. Curr Opin Drug Discov Devel 2003; 6(4): 521–5.
  • Seeberger PH, Werz DB. Synthesis and medical applications of oligosaccharides. Nature 2007; 446(7139): 1046–51.
  • Feizi T, Fazio F, Chai W, Wong CH. Carbohydrate microarrays - a new set of technologies at the frontiers of glycomics. Curr Opin Struct Biol 2003; 13(5): 637–45.
  • Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science 2001; 291(5512): 2351–6.
  • Comelli EM, Sutton-Smith M, Yan Q, Amado M, Panico M, Gilmartin T, et al. Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. J Immunol 2006; 177(4): 2431–40.
  • Haslam SM, Julien S, Burchell JM, Monk CR, Ceroni A, Garden OA, et al. Characterizing the glycome of the mammalian immune system. Immunol Cell Biol 2008; 86(7): 564–73.
  • Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 2008; 320(5876): 664–7.
  • Laughlin ST, Bertozzi CR. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2007; 2(11): 2930–44.
  • Bertozzi, CR, Kiessling, LL. Chemical glycobiology. Science 2001; 291(5512): 2357–64.
  • Ratner DM, Adams EW, Disney MD, Seeberger PH. Tools for glycomics: mapping interactions of carbohydrates in biological systems. Chembiochem 2004; 5(10): 1375–83.
  • Park S, Lee MR, Pyo SJ, Shin I. Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J Am Chem Soc 2004; 126(15): 4812–9.
  • Park S, Lee MR, Shin I. Fabrication of carbohydrate chips and their use to probe protein-carbohydrate interactions. Nat Protoc 2007; 2(11): 2747–58.
  • Horlacher T, Seeberger PH. Carbohydrate arrays as tools for research and diagnostics. Chem Soc Rev 2008; 37(7): 1414–22.
  • Laurent N, Voglmeir J, Flitsch SL. Glycoarrays—tools for determining protein-carbohydrate interactions and glycoenzyme specificity. Chem Commun (Camb) 2008; (37): 4400–12.
  • Disney MD, Seeberger PH. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 2004; 11(12): 1701–7.
  • Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 2004; 101(49): 17033–8.
  • Lee HK, Scanlan CN, Huang CY, Chang AY, Calarese DA, Dwek RA, et al. Reactivity-based one-pot synthesis of oligomannoses: defining antigens recognized by 2G12, a broadly neutralizing anti-HIV-1 antibody. Angew Chem Int Ed Engl 2004; 43(8): 1000–3.
  • Calarese DA, Lee HK, Huang CY, Best MD, Astronomo RD, Stanfield RL, et al. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci U S A 2005; 102(38): 13372–7.
  • Bryan MC, Fazio F, Lee HK, Huang CY, Chang A, Best MD, et al. Covalent display of oligosaccharide arrays in microtiter plates. J Am Chem Soc 2004; 126(28): 8640–1.
  • Shenoy SR, Barrientos LG, Ratner DM, O’Keefe BR, Seeberger PH, Gronenborn AM, et al. Multisite and multivalent binding between cyanovirin-N and branched oligomannosides: calorimetric and NMR characterization. Chem Biol 2002; 9(10): 1109–18.
  • Barrientos LG, Louis JM, Ratner DM, Seeberger PH, Gronenborn AM. Solution structure of a circular-permuted variant of the potent HIV-inactivating protein cyanovirin-N: structural basis for protein stability and oligosaccharide interaction. J Mol Biol 2003; 325(1): 211–23.
  • Adams EW, Ratner DM, Bokesch HR, McMahon JB, O’Keefe BR, Seeberger PH. Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem Biol 2004; 11(6): 875–81.
  • McFeeters RL, Xiong C, O’Keefe BR, Bokesch HR, McMahon JB, Ratner DM, et al. The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J Mol Biol 2007; 369(2): 451–61.
  • Ratner DM, Seeberger PH. Carbohydrate microarrays as tools in HIV glycobiology. Curr Pharm Des 2007; 13(2): 173–83.
  • Blixt O, Allin K, Bohorov O, Liu X, Andersson-Sand H, Hoffmann J, et al. Glycan microarrays for screening sialyltransferase specificities. Glycoconj J 2008; 25(1): 59–68.
  • Bryan MC, Lee LV, Wong CH. High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. Bioorg Med Chem Lett 2004; 14(12): 3185–8.
  • Disney MD, Magnet S, Blanchard JS, Seeberger PH. Aminoglycoside microarrays to study antibiotic resistance. Angew Chem Int Ed Engl 2004; 43(12): 1591–4.
  • Disney MD, Seeberger PH. Aminoglycoside microarrays to explore interactions of antibiotics with RNAs and proteins. Chem Eur J 2004; 10(13): 3308–14.
  • Disney MD, Barrett OJ. An aminoglycoside microarray platform for directly monitoring and studying antibiotic resistance. Biochemistry 2007; 46(40), 11223–30.
  • Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer 2005; 5(1): 29–41.
  • Rabinovich GA, Toscano MA. Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 2009; 9(5): 338–52.
  • de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 2007; 13(3): 367–71.
  • Cambi A, Koopman M, Figdor CG. How C-type lectins detect pathogens. Cell Microbiol 2005; 7(4): 481–8.
  • Engering A, Geijtenbeek TB, van Kooyk Y. Immune escape through C-type lectins on dendritic cells. Trends Immunol 2002; 23(10): 480–5.
  • Geijtenbeek TB, van Vliet SJ, Engering A, t Hart BA, van Kooyk Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 2004; 22: 33–54.
  • van Kooyk Y, Engering A, Lekkerkerker AN, Ludwig IS, Geijtenbeek TB. Pathogens use carbohydrates to escape immunity induced by dendritic cells. Curr Opin Immunol 2004; 16(4): 488–93.
  • Varki A, Angata T. Siglecs—the major subfamily of I-type lectins. Glycobiology 2006; 16(1): 1R–27R.
  • Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7(4): 255–66.
  • Coombs PJ, Taylor ME, Drickamer K. Two categories of mammalian galactose-binding receptors distinguished by glycan array profiling. Glycobiology 2006; 16(8): 1C–7C.
  • van Vliet SJ, van Liempt E, Saeland E, Aarnoudse CA, Appelmelk B, Irimura T, et al. Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int Immunol 2005; 17(5): 661–9.
  • van Vliet SJ, Saeland E, van Kooyk Y. Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol 2008; 29(2): 83–90.
  • McGreal EP, Rosas M, Brown GD, Zamze S, Wong SY, Gordon S, et al. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 2006; 16(5): 422–30.
  • Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 2004; 11(7): 591–8.
  • Blixt O, Han S, Liao L, Zeng Y, Hoffmann J, Futakawa S, et al. Sialoside analogue arrays for rapid identification of high affinity siglec ligands. J Am Chem Soc 2008; 130(21): 6680–1.
  • Bochner BS, Alvarez RA, Mehta P, Bovin NV, Blixt O, White JR, et al. Glycan array screening reveals a candidate ligand for siglec-8. J Biol Chem 2005; 280(6): 4307–12.
  • Liu X, Stocker BL, Seeberger PH. Total synthesis of phosphatidyl-inositol mannosides of Mycobacterium tuberculosis. J Am Chem Soc 2006; 128(11): 3638–48.
  • Boonyarattanakalin S, Liu X, Michieletti M, Lepenies B, Seeberger PH. Chemical synthesis of all phosphatidylinositol mannoside (PIM) glycans from Mycobacterium tuberculosis. J Am Chem Soc 2008; 130(49), 16791–16799.
  • Blixt O, Hoffmann J, Svenson S, Norberg, T. Pathogen specific carbohydrate antigen microarrays: a chip for detection of Salmonella O-antigen specific antibodies. Glycoconj J 2008; 25(1): 27–36.
  • Parthasarathy N, DeShazer D, England M, Waag DM. Polysaccharide microarray technology for the detection of Burkholderia pseudomallei and Burkholderia mallei antibodies. Diagn Microbiol Infect Dis 2006; 56(3): 329–32.
  • Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006; 312(5772): 404–10.
  • Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 2006; 355(5): 1143–55.
  • Walz A, Odenbreit S, Mahdavi J, Boren T, Ruhl, S. Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology 2005; 15(7): 700–8.
  • Disney MD, Zheng J, Swager TM, Seeberger PH. Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc 2004; 126(41): 13343–6.
  • Huang CY, Thayer DA, Chang AY, Best MD, Hoffmann J, Head S, et al. Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc Natl Acad Sci U S A 2006; 103(1): 15–20.
  • Lawrie CH, Marafioti T, Hatton CS, Dirnhofer S, Roncador G, Went P, et al. Cancer-associated carbohydrate identification in Hodgkin’s lymphoma by carbohydrate array profiling. Int J Cancer 2006; 118(12): 3161–6.
  • Manimala JC, Li Z, Jain A, VedBrat S, Gildersleeve JC. Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. Chembiochem 2005; 6(12): 2229–41.
  • Zhao J, Patwa TH, Qiu W, Shedden K, Hinderer R, Misek DE, et al. Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J Proteome Res 2007; 6(5): 1864–74.
  • de Paz JL, Noti C, Seeberger PH. Microarrays of synthetic heparin oligosaccharides. J Am Chem Soc 2006; 128(9): 2766–7.
  • de Paz JL, Spillmann D, Seeberger PH. Microarrays of heparin oligosaccharides obtained by nitrous acid depolymerization of isolated heparin. Chem Commun (Camb) 2006; (29): 3116–8.
  • Noti C, de Paz JL, Polito L, Seeberger PH. Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin-protein interactions. Chem Eur J 2006; 12(34): 8664–86.
  • de Paz JL, Noti C, Böhm F, Werner S, Seeberger PH. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem Biol 2007; 14(8): 879–87.
  • de Paz JL, Moseman EA, Noti C, Polito L, von Andrian UH, Seeberger PH. Profiling heparin-chemokine interactions using synthetic tools. ACS Chem Biol 2007; 2(11): 735–44.
  • Hecht ML, Rosental B, Horlacher T, Hershkovitz O, De Paz JL, Noti C, et al. Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res 2009; 8(2): 712–20.
  • Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2006; 2(9): 467–73.
  • Tully SE, Rawat M, Hsieh-Wilson LC. Discovery of a TNF-alpha antagonist using chondroitin sulfate microarrays. J Am Chem Soc 2006; 128(24): 7740–1.
  • Pilobello KT, Slawek DE, Mahal LK. A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc Natl Acad Sci U S A 2007; 104(28): 11534–9.
  • Liang PH, Wang SK, Wong CH. Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J Am Chem Soc 2007; 129(36): 11177–84.
  • Harris LG, Schofield WC, Doores J, Davis BG, Badyal JP. Rewritable glycochips. J Am Chem Soc 2009; 131(22): 7755–61.
  • Bernardes GJ, Castagner B, Seeberger PH. Combined approaches to the synthesis and study of glycoproteins. ACS Chem Biol 2009, in press.
  • Gamblin DP, Scanlan EM, Davis BG. Glycoprotein synthesis: an update. Chem Rev 2009; 109(1): 131–63.
  • Gamblin DP, van Kasteren S, Bernardes GJ, Chalker JM, Oldham NJ, Fairbanks AJ, et al. Chemical site-selective prenylation of proteins. Mol Biosyst 2008; 4(6): 558–61.
  • Fernandez-Santana V, Cardoso F, Rodriguez A, Carmenate T, Pena L, Valdes Y, et al. Antigenicity and immunogenicity of a synthetic oligosaccharide-protein conjugate vaccine against Haemophilus influenzae type b. Infect Immun 2004; 72(12): 7115–23.
  • Verez-Bencomo V, Fernandez-Santana V, Hardy E, Toledo ME, Rodriguez MC, Heynngnezz L, et al. A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 2004; 305(5683): 522–5.
  • Pozsgay V. Recent developments in synthetic oligosaccharide-based bacterial vaccines. Curr Top Med Chem 2008; 8(2): 126–40.
  • Benaissa-Trouw B, Lefeber DJ, Kamerling JP, Vliegenthart JF, Kraaijeveld K, Snippe H. Synthetic polysaccharide type 3-related di-, tri-, and tetrasaccharide-CRM(197) conjugates induce protection against Streptococcus pneumoniae type 3 in mice. Infect Immun 2001; 69(7): 4698–701.
  • Jansen WT, Hogenboom S, Thijssen J, Kamerling JP, Vliegenthart JF, Verhoef J, et al. Synthetic 6B di-, tri-, and tetrasaccharide-protein conjugates contain pneumococcal type 6A and 6B common and 6B-specific epitopes that elicit protective antibodies in mice. Infect Immun 2001; 69(2): 787–93.
  • Phalipon A, Tanguy M, Grandjean C, Guerreiro C, Belot F, Cohen DS, et al. A synthetic carbohydrate-protein conjugate vaccine candidate against Shigella flexneri 2a infection. J Immunol 2009; 182(4): 2241–7.
  • Vulliez-Le Normand B, Saul FA, Phalipon A, Belot F, Guerreiro C, Mulard, LA, et al. Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc Natl Acad Sci U S A 2008; 105(29): 9976–81.
  • Pozsgay V, Chu C, Pannell L, Wolfe J, Robbins J., Schneerson R. Protein conjugates of synthetic saccharides elicit higher levels of serum IgG lipopolysaccharide antibodies in mice than do those of the O-specific polysaccharide from Shigella dysenteriae type 1. Proc Natl Acad Sci U S A 1999; 96(9): 5194–7.
  • Robbins JB, Kubler-Kielb J, Vinogradov E, Mocca C, Pozsgay V, Shiloach J, et al. Synthesis, characterization, and immunogenicity in mice of Shigella sonnei O-specific oligosaccharide-core-protein conjugates. Proc Natl Acad Sci U S A 2009; 106(19): 7974–8.
  • Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, et al. Malaria: progress, perils, and prospects for eradication. J Clin Invest 2008; 118(4): 1266–76.
  • Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature 2002; 415(6872): 673–9.
  • Jennings VM, Lal AA, Hunter RL. Evidence for multiple pathologic and protective mechanisms of murine cerebral malaria. Infect Immun 1998; 66(12): 5972–9.
  • Lepenies B, Gaworski I, Tartz S, Langhorne J, Fleischer B, Jacobs T. CTLA-4 blockade differentially influences the outcome of non-lethal and lethal Plasmodium yoelii infections. Microbes Infect 2007; 9(6): 687–94.
  • Hearn J, Rayment N, Landon DN, Katz DR, de Souza JB. Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infect Immun 2000; 68(9): 5364–76.
  • Lepenies B, Pfeffer K, Hurchla MA, Murphy TL, Murphy KM, Oetzel J, et al. Ligation of B and T lymphocyte attenuator prevents the genesis of experimental cerebral malaria. J Immunol 2007; 179(6): 4093–100.
  • Schofield L, Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 1993; 177(1): 145–53.
  • Liu X, Kwon YU, Seeberger P H. Convergent synthesis of a fully lipidated glycosylphosphatidylinositol anchor of Plasmodium falciparum. J Am Chem Soc 2005; 127(14): 5004–5.
  • Liu X, Seeberger PH. A Suzuki-Miyaura coupling mediated deprotection as key to the synthesis of a fully lipidated malarial GPI disaccharide. Chem Commun (Camb) 2004; (15): 1708–9.
  • Schofield L, Hewitt MC, Evans K, Siomos MA, Seeberger PH. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 2002; 418(6899): 785–9.
  • Krishnegowda G, Hajjar A.M, Zhu J, Douglass E.J, Uematsu S, Akira S, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 2005; 280(9): 8606–16.
  • Togbe D, Schofield L, Grau GE, Schnyder B, Boissay V, Charron S, et al. Murine cerebral malaria development is independent of toll-like receptor signaling. Am J Pathol 2007; 170(5): 1640–8.
  • Lepenies B, Cramer JP, Burchard GD, Wagner H, Kirschning CJ, Jacobs T. Induction of experimental cerebral malaria is independent of TLR2/4/9. Med Microbiol Immunol 2008; 197(1): 39–44.
  • Cramer JP, Lepenies B, Kamena F, Hölscher C, Freudenberg MA, Burchard GD, et al. MyD88/IL-18-dependent pathways rather than TLRs control early parasitaemia in non-lethal Plasmodium yoelii infection. Microbes Infect 2008; 10(12–13): 1259–65.
  • Brattig NW, Kowalsky K, Liu X, Burchard GD, Kamena F, Seeberger PH. Plasmodium falciparum glycosylphosphatidylinositol toxin interacts with the membrane of non-parasitized red blood cells: a putative mechanism contributing to malaria anemia. Microbes Infect 2008; 10(8): 885–91.
  • Kamena F, Tamborrini M, Liu X, Kwon YU, Thompson F, Pluschke G, Seeberger, PH. Synthetic GPI array to study antitoxic malaria response. Nat Chem Biol 2008; 4(4): 238–40.
  • Sacks D, Sher A. Evasion of innate immunity by parasitic protozoa. Nat Immunol 2002; 3(11): 1041–7.
  • Hewitt MC, Seeberger PH. Solution and solid-support synthesis of a potential leishmaniasis carbohydrate vaccine. J Org Chem 2001; 66(12): 4233–43.
  • Hewitt MC, Seeberger PH. Automated solid-phase synthesis of a branched Leishmania cap tetrasaccharide. Org Lett 2001; 3(23): 3699–702.
  • Liu X, Siegrist S, Amacker M, Zurbriggen R, Pluschke G, Seeberger PH. Enhancement of the immunogenicity of synthetic carbohydrates by conjugation to virosomes: a leishmaniasis vaccine candidate. ACS Chem Biol 2006; 1(3): 161–4.
  • Dube DH, Bertozzi CR. Glycans in cancer and inflammation–potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005; 4(6): 477–88.
  • Galonic DP, Gin DY. Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines. Nature 2007; 446(7139): 1000–7.
  • Becker T, Dziadek S, Wittrock S, Kunz H. Synthetic glycopeptides from the mucin family as potential tools in cancer immunotherapy. Curr Cancer Drug Targets 2006; 6(6): 491–517.
  • Dziadek S, Hobel A, Schmitt E, Kunz H. A fully synthetic vaccine consisting of a tumor-associated glycopeptide antigen and a T-cell epitope for the induction of a highly specific humoral immune response. Angew Chem Int Ed Engl 2005; 44(46): 7630–5.
  • Dziadek S, Kowalczyk D, Kunz H. Synthetic vaccines consisting of tumor-associated MUC1 glycopeptide antigens and bovine serum albumin. Angew Chem Int Ed Engl 2005; 44(46): 7624–30.
  • Zhu T, Boons GJ. A Two-directional and highly convergent approach for the synthesis of the tumor-associated antigen Globo-H. Angew Chem Int Ed Engl 1999; 38(23): 3495–3497.
  • Routenberg Love K, Seeberger PH. Automated solid-phase synthesis of protected tumor-associated antigen and blood group determinant oligosaccharides. Angew Chem Int Ed Engl 2004; 43(5): 602–5.
  • Gilewski T, Ragupathi G, Bhuta S, Williams LJ, Musselli C, Zhang XF, et al. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc Natl Acad Sci U S A 2001; 98(6): 3270–5.
  • Slovin SF, Ragupathi G, Adluri S, Ungers G, Terry K, Kim S, et al. Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc Natl Acad Sci U S A 1999; 96(10): 5710–5.
  • Ragupathi G, Koide F, Livingston PO, Cho YS, Endo A, Wan Q, et al. Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates. J Am Chem Soc 2006; 128(8): 2715–25.
  • Zhu J, Wan Q, Lee D, Yang G, Spassova MK, Ouerfelli O, et al. From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. J Am Chem Soc 2009; 131(26): 9298–303.
  • Boato F, Thomas RM, Ghasparian A, Freund-Renard A, Moehle K, Robinson JA. Synthetic virus-like particles from self-assembling coiled-coil lipopeptides and their use in antigen display to the immune system. Angew Chem Int Ed Engl 2007; 46(47): 9015–8.
  • Ingale S, Wolfert MA, Gaekwad J, Buskas T, Boons GJ. Robust immune responses elicited by a fully synthetic three-component vaccine. Nat Chem Biol 2007; 3(10): 663–7.
  • Zhu J, Wan Q, Ragupathi G, George CM, Livingston PO, Danishefsky SJ. Biologics through chemistry: total synthesis of a proposed dual-acting vaccine targeting ovarian cancer by orchestration of oligosaccharide and polypeptide domains. J Am Chem Soc 2009; 131(11): 4151–8.
  • Dube DH, Bertozzi CR. Metabolic oligosaccharide engineering as a tool for glycobiology. Curr Opin Chem Biol 2003; 7(5): 616–25.
  • Dube DH, Prescher JA, Quang CN, Bertozzi CR. Probing mucin-type O-linked glycosylation in living animals. Proc Natl Acad Sci U S A 2006; 103(13): 4819–24.
  • Prescher JA, Dube DH, Bertozzi CR. Chemical remodelling of cell surfaces in living animals. Nature 2004; 430(7002): 873–7.
  • Laughlin ST, Bertozzi CR. Imaging the glycome. Proc Natl Acad Sci U S A 2009; 106(1): 12–7.
  • Hsu TL, Hanson SR, Kishikawa K, Wang SK, Sawa M, Wong CH. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc Natl Acad Sci U S A 2007; 104(8): 2614–9.
  • Shrimpton E, Butler M, Morel AS, Eren E, Hue SS, Ritter, MA. CD205 (DEC-205): a recognition receptor for apoptotic and necrotic self. Mol Immunol 2009; 46(6): 1229–39.
  • Jin L, McLean PA, Neel BG, Wortis HH. Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J Exp Med 2002; 195(9): 1199–205.
  • Fujikado N, Saijo S, Yonezawa T, Shimamori K, Ishii A, Sugai S, Kotaki H, et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 2008; 14(2): 176–80.
  • Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 2007; 8(1): 39–46.
  • Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 2009; 458(7240): 899–903.
  • Priatel JJ, Chui D, Hiraoka N, Simmons CJ, Richardson KB, Page DM, et al. The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 2000; 12(3): 273–83.
  • Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A 2009; 106(6): 1897–902.
  • Codee JD, Kröck L, Castagner B, Seeberger PH. Automated solid-phase synthesis of protected oligosaccharides containing beta-mannosidic linkages. Chem Eur J 2008; 14(13): 3987–94.
  • Seeberger PH. Automated carbohydrate synthesis as platform to address fundamental aspects of glycobiology–current status and future challenges. Carbohydr Res 2008; 343(12): 1889–96.
  • Stallforth P, Adibekian A, Seeberger PH. De novo synthesis of a D-galacturonic acid thioglycoside as key to the total synthesis of a glycosphingolipid from Sphingomonas yanoikuyae. Org Lett 2008; 10(8): 1573–6.
  • Pilobello KT, Mahal LK. Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr Opin Chem Biol 2007; 11(3): 300–5.
  • Bax M, Garcia-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernandez G, et al. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J Immunol 2007; 179(12): 8216–24.
  • Julien S, Grimshaw MJ, Sutton-Smith M, Coleman J, Morris HR, Dell A, et al. Sialyl-Lewis(x) on P-selectin glycoprotein ligand-1 is regulated during differentiation and maturation of dendritic cells: a mechanism involving the glycosyltransferases C2GnT1 and ST3Gal I. J Immunol 2007; 179(9): 5701–10.
  • Pappu BP, Shrikant PA. Alteration of cell surface sialylation regulates antigen-induced naive CD8+ T cell responses. J Immunol 2004; 173(1): 275–84.
  • Comelli EM, Head SR, Gilmartin T, Whisenant T, Haslam SM, North SJ, et al. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 2006; 16(2): 117–31.
  • Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger PH. In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 2009; 131(6): 2110–2.
  • McKenzie EJ, Taylor PR, Stillion RJ, Lucas AD, Harris J, Gordon S, Martinez-Pomares, L. Mannose receptor expression and function define a new population of murine dendritic cells. J Immunol 2007; 178(8): 4975–83.
  • van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG. Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci U S A 2009; 106(1): 18–23.
  • Adams EW, Ratner DM, Seeberger PH, Hacohen N. Carbohydrate-mediated targeting of antigen to dendritic cells leads to enhanced presentation of antigen to T cells. Chembiochem 2008; 9(2): 294–303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.