76
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Tumour necrosis factor alpha suppression by MDMA is mediated by peripheral heteromeric nicotinic receptors

, , &
Pages 265-271 | Received 21 Jul 2009, Accepted 28 Aug 2009, Published online: 27 Jan 2010

References

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 2003;55:463–508.
  • Chipana C, Camarasa J, Pubill D, Escubedo E. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors. Neuropharmacology 2006;51:885–895.
  • Schwartz RH, Miller NS. MDMA (ecstasy) and the rave: a review. Pediatrics 1997;100:705–708.
  • Hegadoren KM, Baker GB, Bourin M. 3,4-Methylenedioxy analogues of amphetamine: Defining the risks to humans. Neurosci Biobehav Rev 1999;23:539–553.
  • Series H, Boeles S, Dorkins E, Peveler R. Psychiatric complications of Ecstasy use. J Psychopharmacol 1994;8:60–61.
  • Connor TJ. Methylenedioxymethamphetamine (MDMA, ‘ecstasy’):a stressor on the immune system. Immunology 2004;111: 357–367.
  • Connor TJ, Kelly JP, McGee M, Leonard BE. Methylene-dioxymethamphetamine (MDMA; Ecstasy) suppresses IL-1β and TNF-α secretion following an in vivo lipopolysaccharide challenge. Life Sci 2000;67:1601–1612.
  • Connor TJ, Dennedy MC, Harkin A, Kelly JP. Methylene-dioxymethamphetamine-induced suppression of interleukin-1β and tumour necrosis factor-α is not mediated by serotonin. Eur J Pharmacol 2001;418:147–152.
  • Pacifici R, Zuccaro P, Hernandez C, Pichini S, Di Carlo S, Farre M, et al. Acute effects of 3,4-methylene-dioxymethamphetamine alone and in combination with ethanol on the immune system in humans. J Pharmacol Exp Ther 2001;296:207–215.
  • Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 2005;4:673–684.
  • Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H. Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci 2007;80:2314–2319.
  • García-Ratés S, Camarasa J, Escubedo E, Pubill D. Metham-phetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation. Toxicol Appl Pharmacol 2007;223:195–205.
  • Chipana C, Camarasa J, Pubill D, Escubedo E. Memantine prevents MDMA-induced neurotoxicity. Neurotoxicology 2008; 29:179–183.
  • Klingler W, Heffron JJ, Jurkat-Rott K, O’Sullivan G, Alt A, Schlesinger F, et al. 3,4-Methylenedioxymethamphetamine (ecstasy) activates skeletal muscle nicotinic acetylcholine receptors. J Pharmacol Exp Ther 2005;314:1267–1273.
  • Chipana C, Torres I, Camarasa J, Pubill D, Escubedo E. Memantine protects against amphetamine derivatives-induced neurotoxic damage in rodents. Neuropharmacology 2008;54:1254–1263.
  • Chipana C, García-Ratés S, Camarasa J, Pubill D, Escubedo E. Different oxidative profile and nicotinic receptor interaction of amphetamine and 3,4-methylenedioxy-methamphetamine. Neurochem Int. 2008;52:401–410.
  • Wooters TE, Bardo MT. Nicotinic receptors differentially modulate the induction and expression of behavioural sensitization to methylphenidate in rats. Psychopharmacology 2009;204:551–562.
  • Neumann S, Razen M, Habermehl P, Meyer CU, Zepp F, Kirkpatrick CJ, et al. The non-neuronal cholinergic system in peripheral blood cells: effects of nicotinic and muscarinic receptor antagonists on phagocytosis, respiratory burst and migration. Life Sci 2007;80:2361–2364.
  • Pubill D, Chipana C, Camins A, Pallas M, Camarasa J, Escubedo E. Free radical production induced by methamphetamine in rat striatal synaptosomes. Toxicol Appl Pharmacol 2005;204:57–68.
  • Escubedo E, Chipana C, Pérez-Sánchez M, Camarasa J, Pubill D. Methyllycaconitine prevents methamphetamine-induced effects in mouse striatum: Involvement of alpha 7 nicotinic receptors. J Pharmacol Exp Ther 2005;315:658–667.
  • Panagis G, Kastellakis A, Spyraki C, Nomikos G. Effects of methyllycaconitine (MLA), an alpha-7 nicotinic receptor antagonist, on nicotine- and cocaine-induced potentiation of brain stimulation reward. Psychopharmacology 2000;149:388–396.
  • Solinas M, Scherma M, Fattore L, Stroik J, Wertheim C, Tanda G, et al. Nicotinic alpha-7 receptors as a new target for treatment of cannabis abuse. J Neurosci 2007;27:5615–5620.
  • Camarasa J, Marimón JM, Rodrigo T, Escubedo E, Pubill D. Memantine prevents the cognitive impairment induced by 3,4-methylenedioxymethamphetamine in rats. Eur J Pharmacol 2008;589:132–139.
  • Connor TJ, Harkin A, Kelly JP. Methylenedioxymethamphetamine suppresses production of proinflammatory cytokine tumor necrosis factor-α independent of a β-adrenoceptor-mediated increase in interleukin-10. J. Pharmacol Exp Ther 2005; 312:134–143.
  • Connor TJ, Kelly JP. Fenfluramine-induced immunosuppression: an in vivo analysis. Eur J Pharmacol 2002;455:175–185.
  • Flora G, Lee YW, Nath A, Maragos W, Hennig B, Toborek M. Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: potential role of reactive oxygen intermediates and lipid peroxidation. Neuromol Med 2002;2:71–85.
  • Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T, He J, Nitta A, Mizuno M, Tran MH, Seto A, et al. Role of tumour necrosis factor-α in methamphetamine-induced dependence and neurotoxicity. J Neurosci 2004;24:2212–2225.
  • de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 2007;151:915–929.
  • Buisson B, Bertrand D. Nicotine addiction: the possible role of functional upregulation. Trends Pharmacol Sci 2002;23:130–136.
  • Fenster CP, Whitworth TL, Sheffield EB, Quick MW, Lester RA. Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J Neurosci 1999;19:4804–4814.
  • Wang H, Yu M, Ochani M, Amella C.A, Tanovic M, Susarla S Li et, al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003;421:384–388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.