289
Views
59
CrossRef citations to date
0
Altmetric
Review Article

Translational Systems Approaches to the Biology of Inflammation and Healing

, , , , , , , , , , , , & show all
Pages 181-195 | Received 08 Aug 2009, Accepted 28 Sep 2009, Published online: 22 Feb 2010

References

  • <http://nihroadmasp.nih.gov/2008initiatives.asp >. 2007
  • Brown, K.L., Cosseau, C., Gardy, J.L., Hancock, R.E. Complexities of targeting innate immunity to treat infection. Trends Immunol 200728: 260–266.
  • Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008; 454: 428–435.
  • Vodovotz, Y., Constantine, G., Rubin, J., Csete, M., Voit, E.O., An, G. Mechanistic simulations of inflammation: Current state and future prospects. Math. Biosci 2009; 217: 1–10.
  • Nathan, C. Points of control in inflammation. Nature 2002; 420: 846–852.
  • Vodovotz, Y., Csete, M., Bartels, J., Chang, S., An, G. Translational systems biology of inflammation. PLoS. Comput. Biol 2008; 4: 1–6.
  • Namas, R., Ghuma, A., Torres, A., Polanco, P., Gomez, H., Barclay, D., Gordon, L., Zenker, S., Kim, H.K., Hermus, L., et al. An adequately robust early TNF-a response is a hallmark of survival following trauma/hemorrhage. PLoS ONE 2009; 4: e8406.
  • Furuta, T., Kikuchi, T., Iwakura, Y., Watanabe, N. Protective roles of mast cells and mast cell-derived TNF in murine malaria. J.Immunol 2006; 177: 3294–3302.
  • D’Ombrain, M.C., Robinson, L.J., Stanisic, D.I., Taraika, J., Bernard, N., Michon, P., Mueller, I., Schofield, L. Association of early interferon-gamma production with immunity to clinical malaria: a longitudinal study among Papua New Guinean children. Clin. Infect. Dis 2008; 47: 1380–1387.
  • Robinson, L.J., D’Ombrain, M.C., Stanisic, D.I., Taraika, J., Bernard, N., Richards, J.S., Beeson, J.G., Tavul, L., Michon, P., Mueller, I., et al. Cellular tumor necrosis factor, gamma interferon, and interleukin-6 responses as correlates of immunity and risk of clinical Plasmodium falciparum malaria in children from Papua New Guinea. Infect. Immun 2009; 77: 3033–3043.
  • Santos, C.C., Zhang, H., Liu, M., Slutsky, A.S. Bench-to-bedside review: Biotrauma and modulation of the innate immune response. Crit Care 2005; 9: 280–286.
  • Alverdy, J., Zaborina, O., Wu, L. The impact of stress and nutrition on bacterial-host interactions at the intestinal epithelial surface. Curr. Opin. Clin. Nutr. Metab Care 2005; 8: 205–209.
  • Vincent, J.L., Ferreira, F., Moreno, R. Scoring systems for assessing organ dysfunction and survival. Crit Care Clin 2000; 16: 353–366.
  • Rosenberg, A.L. Recent innovations in intensive care unit risk-prediction models. Curr. Opin. Crit Care 2002; 8: 321–330.
  • Schlag, G., Redl, H. Mediators of injury and inflammation. World J Surg 1996; 20: 406–410.
  • Stoiser, B., Knapp, S., Thalhammer, F., Locker, G.J., Kofler, J., Hollenstein, U., Staudinger, T., Wilfing, A., Frass, M., Burgmann, H. Time course of immunological markers in patients with the systemic inflammatory response syndrome: evaluation of sCD14, sVCAM-1, sELAM-1, MIP-1 alpha and TGF-beta 2. Eur J Clin Invest 1998; 28: 672–678.
  • Matzinger, P. The danger model: a renewed sense of self. Science 2002; 296: 301–305.
  • Jarrar, D., Chaudry, I.H., Wang, P. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (Review). Int. J. Mol. Med 1999; 4: 575–583.
  • Kitano, H. Systems biology: a brief overview. Science 2002; 295: 1662–1664.
  • Csete, M.E., Doyle, J.C. Reverse engineering of biological complexity. Science 2002; 295: 1664–1669.
  • Doyle, J., Csete, M. Rules of engagement. Nature 2007; 446: 860
  • Fussenegger, M., Bailey, J.E., Varner, J. A mathematical model of caspase function in apoptosis. Nat. Biotechnol 2000; 18: 768–774.
  • Cobb, J.P., Buchman, T.G., Karl, I.E., Hotchkiss, R.S. Molecular biology of multiple organ dysfunction syndrome: injury, adaptation, and apoptosis. Surg. Infect. (Larchmt.) 2000; 1: 207–215.
  • Maier, R.V. Pathogenesis of multiple organ dysfunction syndrome - endotoxin, inflammatory cells, and their mediators: cytokines and reactive oxygen species. Surg. Infect. (Larchmt.) 2000; 1: 197–205.
  • Goldstein, B., Faeder, J.R., Hlavacek, W.S., Blinov, M.L., Redondo, A., Wofsy, C. Modeling the early signaling events mediated by FcepsilonRI. Mol. Immunol 2002; 38: 1213–1219.
  • Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B. The complexity of complexes in signal transduction. Biotechnol. Bioeng 2003; 84: 783–794.
  • Faeder, J.R., Hlavacek, W.S., Reischl, I., Blinov, M.L., Metzger, H., Redondo, A., Wofsy, C., Goldstein, B. Investigation of early events in Fc epsilon RI-mediated signaling using a detailed mathematical model. J. Immunol 2003; 170: 3769–3781.
  • Goldstein, B., Faeder, J.R., Hlavacek, W.S. Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol 2004; 4: 445–456.
  • Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S. Combinatorial complexity and dynamical restriction of network flows in signal transduction. Syst. Biol. (Stevenage.) 2005; 2: 5–15.
  • Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S. Depicting signaling cascades. Nat. Biotechnol 2006; 24: 137–138.
  • Bagci, E.Z., Vodovotz, Y., Billiar, T.R., Ermentrout, G.B., Bahar, I. Bistability in apoptosis: Roles of Bax, Bcl-2 and mitochondrial permeability transition pores. Biophys. J 2006; 90: 1546–1559.
  • Eissing, T., Conzelmann, H., Gilles, E.D., Allgower, F., Bullinger, E., Scheurich, P. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol. Chem 2004; 279: 36892–36897.
  • Seely, A.J., Christou, N.V. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med 2000; 28: 2193–2200.
  • Buchman, T.G., Cobb, J.P., Lapedes, A.S., Kepler, T.B. Complex systems analysis: a tool for shock research. Shock 2001; 16: 248–251.
  • Farmer, J.D., Kauffman, S.A., Packard, N.H., Perelson, A.S. Adaptive dynamic networks as models for the immune system and autocatalytic sets. Ann. N.Y. Acad. Sci 1987; 504: 118–131.
  • Alt, W., Lauffenburger, D.A. Transient behavior of a chemotaxis system modelling certain types of tissue inflammation. J. Math. Biol 1987; 24: 691–722.
  • An, G. Agent-based computer simulation and SIRS: building a bridge between basic science and clinical trials. Shock 2001; 16: 266–273.
  • Kumar, R., Clermont, G., Vodovotz, Y., Chow, C.C. The dynamics of acute inflammation. J. Theoretical Biol 2004; 230: 145–155.
  • Reynolds, A., Rubin, J., Clermont, G., Day, J., Vodovotz, Y., Ermentrout, G.B. A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J. Theor. Biol 2006; 242: 220–236.
  • Day, J., Rubin, J., Vodovotz, Y., Chow, C.C., Reynolds, A., Clermont, G. A reduced mathematical model of the acute inflammatory response: II. Capturing scenarios of repeated endotoxin administration. J. Theor. Biol 2006; 242: 237–256.
  • Chow, C.C., Clermont, G., Kumar, R., Lagoa, C., Tawadrous, Z., Gallo, D., Betten, B., Bartels, J., Constantine, G., Fink, M.P., et al. The acute inflammatory response in diverse shock states. Shock 2005; 24: 74–84.
  • Prince, J.M., Levy, R.M., Bartels, J., Baratt, A., Kane, J.M., III, Lagoa, C., Rubin, J., Day, J., Wei, J., Fink, M.P. et, al. In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol. Med 2006; 12: 88–96.
  • Lagoa, C.E., Bartels, J., Baratt, A., Tseng, G., Clermont, G., Fink, M.P., Billiar, T.R., Vodovotz, Y. The role of initial trauma in the host’s response to injury and hemorrhage: Insights from a comparison of mathematical simulations and hepatic transcriptomic analysis. Shock 2006; 26: 592–600.
  • Keramaris, N.C., Kanakaris, N.K., Tzioupis, C., Kontakis, G., Giannoudis, P.V. Translational research: from benchside to bedside. Injury 2008; 39: 643–650.
  • Food,and Drug Administration. Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products. 2004; p.1
  • NIH Roadmap for Medical Research: Research Teams. 2006.
  • An, G., Hunt, C.A., Clermont, G., Neugebauer, E., Vodovotz, Y. Challenges and rewards on the road to translational systems biology in acute illness: Four case reports from interdisciplinary teams. J. Crit. Care 2007; 22: 169–175.
  • An, G., Vodovotz, Y. Translational systems biology: Introduction of an engineering approach to the pathophysiology of the burn patient. J. Burn Care Res 2008; 29: 277–285.
  • Clermont, G., Bartels, J., Kumar, R., Constantine, G., Vodovotz, Y., Chow, C. In silico design of clinical trials: a method coming of age. Crit Care Med 2004; 32: 2061–2070.
  • Vodovotz, Y., Clermont, G., Chow, C., An, G. Mathematical models of the acute inflammatory response. Curr. Opin.Crit Care 2004; 10: 383–390.
  • Kumar, R., Chow, C.C., Bartels, J., Clermont, G., Vodovotz, Y. A mathematical simulation of the inflammatory response to anthrax infection. Shock 2008; 29: 104–111.
  • An, G. In-silico experiments of existing and hypothetical cytokine-directed clinical trials using agent based modeling. Crit Care Med 2004; 32: 2050–2060.
  • Vodovotz, Y., Chow, C.C., Bartels, J., Lagoa, C., Prince, J., Levy, R., Kumar, R., Day, J., Rubin, J., Constantine, G., et al. In silico models of acute inflammation in animals. Shock 2006; 26: 235–244.
  • Vodovotz, Y. Deciphering the complexity of acute inflammation using mathematical models. Immunologic Res 2006; 36: 237–246.
  • Vodovotz, Y., An, G. Systems Biology and Inflammation. In Systems Biology in Drug Discovery and Development: Methods and Protocols. Yan, Q., editors. Springer Science & Business Media: Totowa, NJ, 2009; p. In Press
  • Akman-Anderson, L., Vodovotz, Y., Zamora, R., Luckhart, S. Bloodfeeding as an Interface of Mammalian and Arthropod Immunity. In Insect Immunology. Beckage, N., editors. Elsevier: San Diego, CA, 2007; p. 149–177.
  • Drexler, A.L., Vodovotz, Y., Luckhart, S. Plasmodium development in the mosquito: biology bottlenecks and opportunities for mathematical modeling. Trends Parasitol 2008; 24: 333–336.
  • An, G., Mi, Q., Dutta-Moscato, J., Solovyev, A., Vodovotz, Y. Agent-based models in translational systems biology. WIRES 2009; 1: 159–171.
  • Janes, K.A., Yaffe, M.B. Data-driven modelling of signal-transduction networks. Nat. Rev. Mol. Cell Biol 2006; 7: 820–828.
  • Mollen, K.P., Anand, R.J., Tsung, A., Prince, J.M., Levy, R.M., Billiar, T.R. Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock 2006; 26: 430–437.
  • Edelstein-Keshet, L. Mathematical models in biology. Random House, New York, 1988;
  • Bailey, J.E. Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol. Prog 1998; 14: 8–20.
  • Neves, S.R., Iyengar, R. Modeling of signaling networks. Bioessays 2002; 24: 1110–1117.
  • Clermont, G., Vodovotz, Y., Rubin, J. Equation-Based Models of Dynamic Biological Systems. In Endothelial Biomedicine. Aird, W.C., editors. Cambridge University Press: Cambridge, MA, 2007; p. 1780–1785.
  • Ermentrout, G.B., Edelstein-Keshet, L. Cellular automata approaches to biological modeling. J. Theor. Biol 1993; 160: 97–133.
  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.H., Weiner, J., Wiegand, T., DeAngelis, D.L. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 2005; 310: 987–991.
  • Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S. Rule-based modeling of biochemical networks. Complexity 2005; 10: 22–41.
  • Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W. Rules for modeling signal-transduction systems. Sci STKE 2006; 2006: re6
  • Vodovotz, Y., Clermont, G., Hunt, C.A., Lefering, R., Bartels, J., Seydel, R., Hotchkiss, J., Ta’asan, S., Neugebauer, E., An, G. Evidence-based modeling of critical illness: An initial consensus from the Society for Complexity in Acute Illness. J. Crit Care 2007; 22: 77–84.
  • Clermont, G., Chow, C.C., Constantine, G.M., Vodovotz, Y., Bartels, J. Mathematical and Statistical Modeling of Acute Inflammation. In Classification, Clustering, and Data Mining Applications. Proceedings of the International Meeting of Classification Societies. Springer Verlag: New York, 2004; p. 457–467.
  • Montague, G., Morris, J. Neural-network contributions in biotechnology. Trends Biotechnol 1994; 12: 312–324.
  • Lengeler, J.W. Metabolic networks: a signal-oriented approach to cellular models. Biol. Chem 2000; 381: 911–920.
  • Bornholdt, S. Modeling genetic networks and their evolution: a complex dynamical systems perspective. Biol. Chem 2001; 382: 1289–1299.
  • Chaplain, M., Anderson, A. Mathematical modelling of tumour-induced angiogenesis: network growth and structure. Cancer Treat. Res 2004; 117: 51–75.
  • Vogels, T.P., Rajan, K., Abbott, L.F. Neural network dynamics. Annu. Rev. Neurosci 2005; 28: 357–376.
  • Tekirian, T.L., Thomas, S.N., Yang, A. Advancing signaling networks through proteomics. Expert. Rev. Proteomics 2007; 4: 573–583.
  • Stransky, B., Barrera, J., Ohno-Machado, L., De Souza, S.J. Modeling cancer: integration of “omics” information in dynamic systems. J Bioinform. Comput. Biol 2007; 5: 977–986.
  • Chaouiya, C. Petri net modelling of biological networks. Brief.Bioinform 2007; 8: 210–219.
  • Nikiforova, V.J., Willmitzer, L. Network visualization and network analysis. EXS 2007; 97: 245–275.
  • Wang, E., Lenferink, A., O’Connor-McCourt, M. Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol. Life Sci 2007; 64: 1752–1762.
  • Goncharova, L.B., Tarakanov, A.O. Molecular networks of brain and immunity. Brain Res. Rev 2007; 55: 155–166.
  • Christensen, C., Thakar, J., Albert, R. Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. IET. Syst. Biol 2007; 1: 61–77.
  • Rho, S., You, S., Kim, Y., Hwang, D. From proteomics toward systems biology: integration of different types of proteomics data into network models. BMB. Rep 2008; 41: 184–193.
  • Han, J.D. Understanding biological functions through molecular networks. Cell Res 2008; 18: 224–237.
  • Li, H., Xuan, J., Wang, Y., Zhan, M. Inferring regulatory networks. Front Biosci 2008; 13: 263–275.
  • Janes, K.A., Albeck, J.G., Gaudet, S., Sorger, P.K., Lauffenburger, D.A., Yaffe, M.B. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005; 310: 1646–1653.
  • Frink, M., Hsieh, Y.C., Hsieh, C.H., Pape, H.C., Choudhry, M.A., Schwacha, M.G., Chaudry, I.H. Keratinocyte-derived chemokine plays a critical role in the induction of systemic inflammation and tissue damage after trauma-hemorrhage. Shock 2007; 28: 576–581.
  • Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M.P., Lotze, M.T., Yang, H., Li, J., Tracey, K.J., Geller, D.A., et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med 2005; 201: 1135–1143.
  • Izuishi, K., Tsung, A., Jeyabalan, G., Critchlow, N.D., Li, J., Tracey, K.J., DeMarco, R.A., Lotze, M.T., Fink, M.P., Geller, D.A., et al. Cutting edge: high-mobility group box 1 preconditioning protects against liver ischemia-reperfusion injury. J. Immunol 2006; 176: 7154–7158.
  • Yang, R., Harada, T., Mollen, K.P., Prince, J.M., Levy, R.M., Englert, J.A., Gallowitsch-Puerta, M., Yang, L., Yang, H., Tracey, K.J., et al. Anti-HMGB1 Neutralizing Antibody Ameliorates Gut Barrier Dysfunction and Improves Survival after Hemorrhagic Shock. Mol. Med. 2006.
  • Tsung, A., Zheng, N., Jeyabalan, G., Izuishi, K., Klune, J.R., Geller, D.A., Lotze, M.T., Lu, L., Billiar, T.R. Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc. Biol 2007; 81: 119–128.
  • Fan, J., Li, Y., Levy, R., Fan, J.J., Hackam, D.J., Vodovotz, Y., Billiar, T.R., Wilson, M.A. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: Role of HMGB1-TLR4 signaling. J. Immunol 2007; 178: 6573–6580.
  • Tsung, A., Klune, J.R., Zhang, X., Jeyabalan, G., Cao, Z., Peng, X., Stolz, D.B., Geller, D.A., Rosengart, M.R., Billiar, T.R. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp. Med 2007; 204: 2913–2923.
  • Klune, J.R., Dhupar, R., Cardinal, J., Billiar, T.R., Tsung, A. HMGB1: endogenous danger signaling. Mol. Med 2008; 14: 476–484.
  • Muzio, M., Polentarutti, N., Bosisio, D., Manoj Kumar, P.P., Mantovani, A. Toll-like receptor family and signalling pathway. Biochem. Soc. Trans 2000; 28: 563–566.
  • O’Neill, L. The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defence. Biochem. Soc. Trans 2000; 28: 557–563.
  • Muzio, M., Polentarutti, N., Bosisio, D., Manoj Kumar, P.P., Mantovani, A. Toll-like receptor family and signalling pathway. Biochem. Soc. Trans 2000; 28: 563–566.
  • Beutler, B., Poltorak, A. Sepsis and evolution of the innate immune response. Crit Care Med 2001; 29: S2–S6.
  • Beutler, B. TLR4 as the mammalian endotoxin sensor. Curr. Top. Microbiol. Immunol 2002; 270: 109–120.
  • Beutler, B., Hoebe, K., Du, X., Ulevitch, R.J. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol 2003; 74: 479–485.
  • Janssens, S., Beyaert, R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev 2003; 16: 637–646.
  • Arroyo-Espliguero, R., Avanzas, P., Jeffery, S., Kaski, J.C. CD14 and toll-like receptor 4: a link between infection and acute coronary events? Heart 2004; 90: 983–988.
  • Rivière, B., Epshteyn, Y., Swigon, D., Vodovotz, Y. A simple mathematical model of signaling resulting from the binding of lipopolysaccharide with Toll-like receptor 4 demonstrates inherent preconditioning behavior. Math. Biosci 2009; 217: 19–26.
  • Foteinou, P.T., Calvano, S.E., Lowry, S.F., Androulakis, I.P. Modeling endotoxin-induced systemic inflammation using an indirect response approach. Math. Biosci 2009; 217: 27–42.
  • An, G. A model of TLR4 signaling and tolerance using a qualitative, particle event-based method: Introduction of Spatially Configured Stochastic Reaction Chambers (SCSRC). Math. Biosci 2009; 217: 43–52.
  • Faeder, J.R., Blinov, M.L., Hlavacek, W.S. Rule-based modeling of biochemical systems with BioNetGen. In Methods in Molecular Biology: Systems Biology. Maly, I.V., editors. Humana Press: Totowa, NJ, 2008; p. 113–168.
  • An, G., Faeder, J.R. Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math. Biosci 2009; 217: 53–63.
  • Gallucci, S., Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol 2001; 13: 114–119.
  • Clark, I.A., Budd, A.C., Alleva, L.M. Sickness behaviour pushed too far–the basis of the syndrome seen in severe protozoal, bacterial and viral diseases and post-trauma. Malar. J 2008; 7: 208
  • Mi, Q., Rivière, B., Clermont, G., Steed, D.L., Vodovotz, Y. Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-b1. Wound Rep. Reg 2007; 15: 617–682.
  • Li, N.Y.K., Verdolini, K., Clermont, G., Mi, Q., Hebda, P.A., Vodovotz, Y. A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS ONE 2008; 3: e2789.
  • Solovyev, A., Mikheev, M., Zhou, L., Dutta-Moscato, J., Ziraldo, C., An, G., Vodovotz, Y.,, Mi, Q. SPARK: A framework for multi-scale agent-based biomedical modeling. SCS Press; 2010 Apr 12; Orlando, FL. 2010; Proceedings of the 2010 Agent-Directed Simulation Symposium.
  • Hancioglu, B., Swigon, D., Clermont, G. A dynamical model of human immune response to influenza A virus infection. J. Theor. Biol 2007; 246: 70–86.
  • An, G. Introduction of a agent based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor. Biol. Med. Model. 2008; 5.
  • An, G. Dynamic Knowledge Representation using Agent Based Modeling: Ontology Instantiation and Verification of Conceptual Models. In Systems Biology: Methods in Molecular Biology Series. Maly, I., editors. Humana Press: Totowa, NJ, 2009; p. 445–468.
  • Fink, M.P., Delude, R.L. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin 2005; 21: 177–196.
  • Aird, W.C. Vascular bed-specific hemostasis: Role of endothelium in sepsis pathogenesis. Crit. Care Med. 2001, 29[Suppl], S28–S35.
  • Aird, W.C. Endothelium as a therapeutic target in sepsis. Curr.Drug Targets 2007; 8: 501–507.
  • Daun, S., Rubin, J., Vodovotz, Y., Roy, A., Parker, R., Clermont, G. An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: Results from parameter space reduction. J. Theor. Biol 2008; 253: 843–853.
  • Torres, A., Bentley, T., Bartels, J., Sarkar, J., Barclay, D., Namas, R., Constantine, G., Zamora, R., Puyana, J.C., Vodovotz, Y. Mathematical modeling of post-hemorrhage inflammation in mice: Studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock 2009; 32: 172–178.
  • McCloskey, C.A., Kameneva, M.V., Uryash, A., Gallo, D.J., Billiar, T.R. Tissue hypoxia activates JNK in the liver during hemorrhagic shock. Shock 2004; 22: 380–386.
  • Parker, S.J., Watkins, P.E. Experimental models of gram-negative sepsis. Br. J. Surg 2001; 88: 22–30.
  • Marshall, J.C., Deitch, E., Moldawer, L.L., Opal, S., Redl, H., Poll, T.V. Preclinical models of shock and sepsis: what can they tell us? Shock. 2005, 24 Suppl 1, 1–6.
  • Doherty, D.G., O’Farrelly, C. Innate and adaptive lymphoid cells in the human liver. Immunol. Rev 2000; 174: 5–20.
  • Gao, B., Jeong, W.I., Tian, Z. Liver: An organ with predominant innate immunity. Hepatology 2008; 47: 729–736.
  • Antoniades, C.G., Berry, P.A., Wendon, J.A., Vergani, D. The importance of immune dysfunction in determining outcome in acute liver failure. J. Hepatol 2008; 49: 845–861.
  • Lee, W.M. Acute liver failure. N. Engl. J. Med 1993; 329: 1862–1872.
  • Brown, K.E., Tisdale, J., Barrett, A.J., Dunbar, C.E., Young, N.S. Hepatitis-associated aplastic anemia. N. Engl. J. Med 1997; 336: 1059–1064.
  • Rolando, N., Harvey, F., Brahm, J., Philpott-Howard, J., Alexander, G., Gimson, A., Casewell, M., Fagan, E., Williams, R. Prospective study of bacterial infection in acute liver failure: an analysis of fifty patients. Hepatology 1990; 11: 49–53.
  • Branski, R.C., Verdolini, K., Sandulache, V., Rosen, C.A., Hebda, P.A. Vocal fold wound healing: a review for clinicians. J. Voice 2006; 20: 432–442.
  • Reinhart, K., Menges, T., Gardlund, B., Harm, Z.J., Smithes, M., Vincent, J.L., Tellado, J.M., Salgado-Remigio, A., Zimlichman, R., Withington, S., et al. Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: The RAMSES Study. Crit Care Med 2001; 29: 765–769.
  • Fisher, C.J., Jr., Opal, S.M., Dhainaut, J.F., Stephens, S., Zimmerman, J.L., Nightingale, P., Harris, S.J., Schein, R.M., Panacek, E.A., Vincent, J.L., et al. Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. The CB0006 Sepsis Syndrome Study Group. Crit Care Med 1993; 21: 318–327.
  • Remick, D.G., Bolgos, G.R., Siddiqui, J., Shin, J., Nemzek, J.A. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock 2002; 17: 463–467.
  • Zenati, M.S., Billiar, T.R., Townsend, R.N., Peitzman, A.B., Harbrecht, B.G. A brief episode of hypotension increases mortality in critically ill trauma patients. J Trauma 2002; 53: 232–236.
  • Chau, T.A., McCully, M.L., Brintnell, W., An, G., Kasper, K.J., Vines, E.D., Kubes, P., Haeryfar, S.M., McCormick, J.K., Cairns, E., et al. Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nat. Med 2009; 15: 641–648.
  • Chang, S., Baratt, A., Clermont, G., Planquois, J.-M., Yan, S.B., Williams, M., Macias, W. (2006) Mathematical model predicting outcomes of sepsis patients treated with Xigris(R): ENHANCE trial. [Abstract] Shock. 25, 70–71.
  • Vodovotz, Y., Zamora, R., Lieber, M.J., Luckhart, S. Cross-talk between nitric oxide and transforming growth factor-b1 in malaria. Curr. Mol. Med 2004; 4: 787–797.
  • Luckhart, S., Lieber, M.J., Singh, N., Zamora, R., Vodovotz, Y. Low levels of mammalian TGF-b1 are protective against malaria parasite infection, a paradox clarified in the mosquito host. Exp. Parasitol 2008; 118: 290–296.
  • Upperman, J.S., Lugo, B., Camerini, V., Yotov, I., Rubin, J., Clermont, G., Zamora, R., Ermentrout, G.B., Ford, H.R., Vodovotz, Y. Mathematical modeling in NEC - A new look at an ongoing problem. J. Pediatr. Surg 2007; 42: 445–453.
  • Alverdy, J.C., Laughlin, R.S., Wu, L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit Care Med 2003; 31: 598–607.
  • Alverdy, J.C., Chang, E.B. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J. Leukoc. Biol 2008; 83: 461–466.
  • An, G. (2008) Modeling sepsis as ecological collapse and social disorder: Bacterial game theory, scarcity and insurrection. [Abstract] Shock. 29, 100–101.
  • Axelrod, R., Hamilton, W.D. The evolution of cooperation. Science 1981; 211: 1390–1396.
  • Evans RS, Burke JP, Pestotnik SL, Classen DC, Menlove RL, and Gardner RM. Prediction of hospital infections and selection of antibiotics using an automated hospital database. [Unpublished] 1990;
  • Hotchkiss, J.R., Strike, D.G., Crooke, P.S. Pathogen transmission and clinic scheduling. Emerg. Infect. Dis 2006; 12: 159–162.
  • Najera, J.A. A critical review of the field application of a mathematical model of malaria eradication. Bull. World Health Organ 1974; 50: 449–457.
  • Flahault, A., Deguen, S., Valleron, A.J. A mathematical model for the European spread of influenza. Eur. J. Epidemiol 1994; 10: 471–474.
  • Levin, B.R. Models for the spread of resistant pathogens. Neth. J Med 2002; 60: 58–64.
  • Ferguson, N.M., Mallett, S., Jackson, H., Roberts, N., Ward, P. A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals. J. Antimicrob. Chemother 2003; 51: 977–990.
  • Teboh-Ewungkem, M.I., Podder, C.N., Gumel, A.B. Mathematical Study of the Role of Gametocytes and an Imperfect Vaccine on Malaria Transmission Dynamics. Bull. Math. Biol. 2009.
  • Tasman, H., Soewono, E., Sidarto, K.A., Syafruddin, D., Rogers, W.O. A model for transmission of partial resistance to anti-malarial drugs. Math. Biosci. Eng 2009; 6: 649–661.
  • Rafikov, M., Bevilacqua, L., Wyse, A.P. Optimal control strategy of malaria vector using genetically modified mosquitoes. J. Theor. Biol 2009; 258: 418–425.
  • Li, J. A malaria model with partial immunity in humans. Math. Biosci. Eng 2008; 5: 789–801.
  • Chitnis, N., Hyman, J.M., Cushing, J.M. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol 2008; 70: 1272–1296.
  • Larrick, J.W., Wright, S.C. Native cytokine antagonists. Baillieres Clin. Haematol 1992; 5: 681–702.
  • Fernandez-Botran, R., Crespo, F.A., Sun, X. Soluble cytokine receptors in biological therapy. Expert.Opin.Biol.Ther 2002; 2: 585–605.
  • Dinarello, C.A. Blocking IL-1 in systemic inflammation. J.Exp.Med 2005; 201: 1355–1359.
  • Gerlach, J.C. Bioreactors for extracorporeal liver support. Cell Transplant. 2006: 15: Suppl 1, S91–103.
  • Zenker, S., Rubin, J., Clermont, G. From inverse problems in mathematical physiology to quantitative differential diagnoses. PLoS. Comput. Biol 2007; 3: e204
  • Marshall, J.C. Through a glass darkly: the brave new world of in silico modeling. Crit Care Med 2004; 32: 2157–2159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.