296
Views
46
CrossRef citations to date
0
Altmetric
Research Article

In vitro toxicity of silver nanoparticles on murine peritoneal macrophages

, &
Pages 135-140 | Received 17 Mar 2010, Accepted 19 Apr 2010, Published online: 27 May 2010

References

  • Kim, T.N., Feng, Q.L., Kim, J.O., Wu, J., Wang, H., Chen, G.C., Cui, F.Z. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 1998, 9, 129–34.
  • Chopra, I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J. Antimicrob. Chemother. 2007, 59, 587–90.
  • Samantha AJ, Philip GB, Michael W, David P. Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair and Regeneration 2004, 12, 288–294.
  • Chen, X., Schluesener, H.J. Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 2008, 176, 1–12.
  • Rai, M., Yadav, A., Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83.
  • Sondi, I., Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–82.
  • Braydich-Stolle, L., Hussain, S., Schlager, J.J., Hofmann, M.C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88, 412–9.
  • Burd, A., Kwok, C.H., Hung, S.C., Chan, H.S., Gu, H., Lam, W.K., Huang, L. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen. 2007, 15, 94–104.
  • Dobrovolskaia, M.A., McNeil, S.E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469–78.
  • Ghazanfari, T., Hassan, Z.M., Khamesipour, A. Enhancement of peritoneal macrophage phagocytic activity against Leishmania major by garlic (Allium sativum) treatment. J. Ethnopharmacol. 2006, 103, 333–7.
  • Suzuki, Y., Yoshimaru, T., Yamashita, K., Matsui, T., Yamaki, M., Shimizu, K. Exposure of RBL-2H3 mast cells to Ag(+) induces cell degranulation and mediator release. Biochem. Biophys. Res. Commun. 2001, 283, 707–14.
  • Lam, P.K., Chan, E.S., Ho, W.S., Liew, C.T. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br. J. Biomed. Sci. 2004, 61, 125–7.
  • Poon, V.K., Burd, A. In vitro cytotoxity of silver: implication for clinical wound care. Burns 2004, 30, 140–7.
  • Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005, 19, 975–83.
  • Hussain, S.M., Javorina, A.K., Schrand, A.M., Duhart, H.M., Ali, S.F., Schlager, J.J. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sci. 2006, 92, 456–63.
  • Paddle-Ledinek, J.E., Nasa, Z., Cleland, H.J. Effect of different wound dressings on cell viability and proliferation. Plast. Reconstr. Surg. 2006, 117, 110S–118S; discussion 119S–120S.
  • Yoshimaru, T., Suzuki, Y., Inoue, T., Niide, O., Ra, C. Silver activates mast cells through reactive oxygen species production and a thiol-sensitive store-independent Ca2+ influx. Free Radic. Biol. Med. 2006, 40, 1949–59.
  • Chung, T.H., Wu, S.H., Yao, M., Lu, C.W., Lin, Y.S., Hung, Y., Mou, C.Y., Chen, Y.C., Huang, D.M. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007, 28, 2959–66.
  • Arora, S., Jain, J., Rajwade, J.M., Paknikar, K.M. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol. Appl. Pharmacol. 2009, 236, 310–8.
  • Suh, W.H., Suslick, K.S., Stucky, G.D., Suh, Y.H. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 2009, 87, 133–70.
  • Ilium L, Hunneyball IM, Davis SS. The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages. Int J Pharm 1986, 29, 53–65.
  • Privitera N, Naon R, Vierling P, Riess JG. Phagocytic uptake by mouse peritoneal macrophages of microspheres coated with phosphocholine or polyethylene glycol. Int J Pharm 1995, 120, 73–82.
  • Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R.R., Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005, 21, 10644–54.
  • Chono, S., Morimoto, K. Uptake of dexamethasone incorporated into liposomes by macrophages and foam cells and its inhibitory effect on cellular cholesterol ester accumulation. J. Pharm. Pharmacol. 2006, 58, 1219–25.
  • Soto, K., Garza, K.M., Murr, L.E. Cytotoxic effects of aggregated nanomaterials. Acta Biomater. 2007, 3, 351–8.
  • Pulskamp, K., Diabaté, S., Krug, H.F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 2007, 168, 58–74.
  • Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J., Forrest, M.L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 2009, 61, 457–66.
  • Jones, C.F., Grainger, D.W. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 2009, 61, 438–56.
  • Cengelli, F., Maysinger, D., Tschudi-Monnet, F., Montet, X., Corot, C., Petri-Fink, A., Hofmann, H., Juillerat-Jeanneret, L. Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J. Pharmacol. Exp. Ther. 2006, 318, 108–16.
  • Bastús, N.G., Sánchez-Tilló, E., Pujals, S., Farrera, C., Kogan, M.J., Giralt, E., Celada, A., Lloberas, J., Puntes, V. Peptides conjugated to gold nanoparticles induce macrophage activation. Mol. Immunol. 2009, 46, 743–8.
  • Park, E.J., Park, K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 2009, 184, 18–25.
  • Scheel, J., Weimans, S., Thiemann, A., Heisler, E., Hermann, M. Exposure of the murine RAW 264.7 macrophage cell line to hydroxyapatite dispersions of various composition and morphology: assessment of cytotoxicity, activation and stress response. Toxicol. In Vitro 2009, 23, 531–8.
  • Gonçalves, C., Torrado, E., Martins, T., Pereira, P., Pedrosa, J., Gama, M. Dextrin nanoparticles: studies on the interaction with murine macrophages and blood clearance. Colloids Surf. B. Biointerfaces 2010, 75, 483–9.
  • Soto KF, Carrasco A, Powell TG, Murr LE, Garza KM. Biological effects of nanoparticulate materials. Mater Sci Eng C 2006, 26, 1421–1427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.