493
Views
41
CrossRef citations to date
0
Altmetric
Review Article

Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis

&
Pages 545-567 | Received 31 Jul 2010, Accepted 02 Aug 2010, Published online: 02 Feb 2011

References

  • Kulkarni, A.P., Kellaway, L.A., Lahiri, D.K., Kotwal, G.J. Neuroprotection from complement-mediated inflammatory damage. Ann. N. Y. Acad. Sci. 2004, 1035, 147–164.
  • Gold, R., Linington, C., Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006, 129, 1953–1971.
  • Nicot, A. Gender and sex hormones in multiple sclerosis pathology and therapy. Front. Biosci. 2009, 14, 4477–4515.
  • Brück, W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J. Neurol. 2005, 252(Suppl 5), v3–v9.
  • Hayes, C.E., Donald Acheson, E. A unifying multiple sclerosis etiology linking virus infection, sunlight, and vitamin D, through viral interleukin-10. Med. Hypotheses 2008, 71, 85–90.
  • Hutter, C. On the causes of multiple sclerosis. Med. Hypotheses 1993, 41, 93–96.
  • Hutter, C.D., Laing, P. Multiple sclerosis: sunlight, diet, immunology and aetiology. Med. Hypotheses 1996, 46, 67–74.
  • Adorini, L. Selective immunointervention in autoimmune diseases: lessons from multiple sclerosis. J. Chemother. 2001, 13, 219–234.
  • Mirshafiey, A., Matsuo, H., Nakane, S., Rehm, B.H., Koh, C.S., Miyoshi, S. Novel immunosuppressive therapy by M2000 in experimental multiple sclerosis. Immunopharmacol. Immunotoxicol. 2005, 27, 255–265.
  • Lopez-Diego, R.S., Weiner, H.L. Novel therapeutic strategies for multiple sclerosis–a multifaceted adversary. Nat. Rev. Drug Discov. 2008, 7, 909–925.
  • Mirshafiey, A., Mohsenzadegan, M. Antioxidant therapy in multiple sclerosis. Immunopharmacol. Immunotoxicol. 2009, 31, 13–29.
  • Noseworthy, J.H., Lucchinetti, C., Rodriguez, M., Weinshenker, B.G. Multiple sclerosis. N. Engl. J. Med. 2000, 343, 938–952.
  • Oksenberg, J.R., Baranzini, S.E., Sawcer, S., Hauser, S.L. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat. Rev. Genet. 2008, 9, 516–526.
  • Alcina, A., Ramagopalan, S.V., Fernández, O., Catalá-Rabasa, A., Fedetz, M., Ndagire, D., Leyva, L., Arnal, C., Delgado, C., Lucas, M., Izquierdo, G., Ebers, G.C., Matesanz, F. Hexose-6-phosphate dehydrogenase: a new risk gene for multiple sclerosis. Eur. J. Hum. Genet. 2009. (In Press)
  • Kristjansdottir, G., Sandling, J.K., Bonetti, A., Roos, I.M., Milani, L., Wang, C., Gustafsdottir, S.M., Sigurdsson, S., Lundmark, A., Tienari, P.J., Koivisto, K., Elovaara, I., Pirttilä, T., Reunanen, M., Peltonen, L., Saarela, J., Hillert, J., Olsson, T., Landegren, U., Alcina, A., Fernández, O., Leyva, L., Guerrero, M., Lucas, M., Izquierdo, G., Matesanz, F., Syvänen, A.C. Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. J. Med. Genet. 2008, 45, 362–369.
  • Hoppenbrouwers, I.A., Aulchenko, Y.S., Ebers, G.C., Ramagopalan, S.V., Oostra, B.A., van Duijn, C.M., Hintzen, R.Q. EVI5 is a risk gene for multiple sclerosis. Genes Immun. 2008, 9, 334–337.
  • Lorentzen, A.R., Smestad, C., Lie, B.A., Oturai, A.B., Akesson, E., Saarela, J., Myhr, K.M., Vartdal, F., Celius, E.G., Sørensen, P.S., Hillert, J., Spurkland, A., Harbo, H.F. The SH2D2A gene and susceptibility to multiple sclerosis. J. Neuroimmunol. 2008, 197, 152–158.
  • Camiña-Tato, M., Morcillo-Suárez, C., Navarro, A., Fernández, M., Horga, A., Montalban, X., Comabella, M. Genetic association between polymorphisms in the BTG1 gene and multiple sclerosis. J. Neuroimmunol. 2009, 213, 142–147.
  • Sarial, S., Shokrgozar, M.A., Amirzargar, A., Shokri, F., Radfar, J., Zohrevand, P., Arjang, Z., Sahraian, M.A., Lotfi, J. IL-1, IL-1R and TNFalpha gene polymorphisms in Iranian patients with multiple sclerosis. Iran. J. Allergy. Asthma. Immunol. 2008, 7, 37–40.
  • Myhr, K.M., Raknes, G., Nyland, H., Vedeler, C. Immunoglobulin G Fc-receptor (FcgammaR) IIA and IIIB polymorphisms related to disability in MS. Neurology 1999, 52, 1771–1776.
  • Evangelou, N., Jackson, M., Beeson, D., Palace, J. Association of the APOE epsilon4 allele with disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatr. 1999, 67, 203–205.
  • Shokrgozar, M.A., Sarial, S., Amirzargar, A., Shokri, F., Rezaei, N., Arjang, Z., Radfar, J., Yousefi-Behzadi, M., Ali Sahraian, M., Lotfi, J. IL-2, IFN-gamma, and IL-12 gene polymorphisms and susceptibility to multiple sclerosis. J. Clin. Immunol. 2009, 29, 747–751.
  • Karabon, L., Kosmaczewska, A., Bilinska, M., Pawlak, E., Ciszak, L., Jedynak, A., Jonkisz, A., Noga, L., Pokryszko-Dragan, A., Koszewicz, M., Frydecka, I. The CTLA-4 gene polymorphisms are associated with CTLA-4 protein expression levels in multiple sclerosis patients and with susceptibility to disease. Immunology 2009, 128, e787–e796.
  • Mero, I.L., Lorentzen, A.R., Ban, M., Smestad, C., Celius, E.G., Aarseth, J.H., Myhr, K.M., Link, J., Hillert, J., Olsson, T., Kockum, I., Masterman, T., Oturai, A.B., Søndergaard, H.B., Sellebjerg, F., Saarela, J., Kemppinen, A., Elovaara, I., Spurkland, A., Dudbridge, F., Lie, B.A., Harbo, H.F. A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis. Eur. J. Hum. Genet. 2010, 18, 502–504.
  • Ronaghi, M., Vallian, S., Etemadifar, M. CD24 gene polymorphism is associated with the disease progression and susceptibility to multiple sclerosis in the Iranian population. Psychiatry Res. 2009, 170, 271–272.
  • Ramil, E., Sánchez, A., González-Pérez, P., Rodríguez-Antigüedad, A., Gómez-Lozano, N., Ortiz, P., Arroyo, R., De Las Heras, V., Vilches, C., García-Merino, A. The cannabinoid receptor 1 gene (CNR1) and multiple sclerosis: an association study in two case-control groups from Spain. Mult. Scler. 2010, 16, 139–146.
  • Wood, N.W., Sawcer, S.J., Kellar-Wood, H.F., Holmans, P., Clayton, D., Robertson, N., Compston, D.A. Susceptibility to multiple sclerosis and the immunoglobulin heavy chain variable region. J. Neurol. 1995, 242, 677–682.
  • Dyment, D.A., Steckley, J.L., Morrison, K., Willer, C.J., Cader, M.Z., DeLuca, G.C., Sadovnick, A.D., Risch, N., Ebers, G.C.; Canadian Collaborative Study Group. TCR beta polymorphisms and multiple sclerosis. Genes Immun. 2004, 5, 337–342.
  • Hong, J., Li, H., Chen, M., Zang, Y.C., Skinner, S.M., Killian, J.M., Zhang, J.Z. Regulatory and pro-inflammatory phenotypes of myelin basic protein-autoreactive T-cells in multiple sclerosis. Int. Immunol. 2009, 21, 1329–1340.
  • Sospedra, M., Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 2005, 23, 683–747.
  • Haines, J.L., Ter-Minassian, M., Bazyk, A., Gusella, J.F., Kim, D.J., Terwedow, H., Pericak-Vance, M.A., Rimmler, J.B., Haynes, C.S., Roses, A.D., Lee, A., Shaner, B., Menold, M., Seboun, E., Fitoussi, R.P., Gartioux, C., Reyes, C., Ribierre, F., Gyapay, G., Weissenbach, J., Hauser, S.L., Goodkin, D.E., Lincoln, R., Usuku, K., Oksenberg, J.R. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat. Genet. 1996, 13, 469–471.
  • Barcellos, L.F., Oksenberg, J.R., Green, A.J., Bucher, P., Rimmler, J.B., Schmidt, S., Garcia, M.E., Lincoln, R.R., Pericak-Vance, M.A., Haines, J.L., Hauser, S.L.; Multiple Sclerosis Genetics Group. Genetic basis for clinical expression in multiple sclerosis. Brain 2002, 125, 150–158.
  • Sospedra, M., Muraro, P.A., Stefanová, I., Zhao, Y., Chung, K., Li, Y., Giulianotti, M., Simon, R., Mariuzza, R., Pinilla, C., Martin, R. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. J. Immunol. 2006, 176, 1951–1961.
  • DeLuca, G.C., Ramagopalan, S.V., Herrera, B.M., Dyment, D.A., Lincoln, M.R., Montpetit, A., Pugliatti, M., Barnardo, M.C., Risch, N.J., Sadovnick, A.D., Chao, M., Sotgiu, S., Hudson, T.J., Ebers, G.C. An extremes of outcome strategy provides evidence that multiple sclerosis severity is determined by alleles at the HLA-DRB1 locus. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 20896–20901.
  • Silva, A.M., Bettencourt, A., Pereira, C., Santos, E., Carvalho, C., Mendonça, D., Costa, P.P., Monteiro, L., Martins, B. Protective role of the HLA-A*02 allele in Portuguese patients with multiple sclerosis. Mult. Scler. 2009, 15, 771–774.
  • Pastorino, R., Menni, C., Barca, M., Foco, L., Saddi, V., Gazzaniga, G., Ferrai, R., Mascaretti, L., Dudbridge, F., Berzuini, C., Murgia, S.B., Piras, M.L., Ticca, A., Bitti, P.P., Bernardinelli, L. Association between protective and deleterious HLA alleles with multiple sclerosis in Central East Sardinia. PLoS ONE 2009, 4, e6526.
  • Inglese, M. Multiple sclerosis: new insights and trends. AJNR. Am. J. Neuroradiol. 2006, 27, 954–957.
  • Frohman, E.M., Racke, M.K., Raine, C.S. Multiple sclerosis–the plaque and its pathogenesis. N. Engl. J. Med. 2006, 354, 942–955.
  • Jadidi-Niaragh, F., Mirshafiey, A. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology 2010, 59, 180–189.
  • Mirshafiey, A., Jadidi-Niaragh, F. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis. Immunopharmacol. Immunotoxicol. 2010, 32, 219–227.
  • Pittock, S.J., Lucchinetti, C.F. The pathology of MS: new insights and potential clinical applications. Neurologist 2007, 13, 45–56.
  • Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R., Friese, M., Schröder, R., Deckert, M., Schmidt, S., Ravid, R., Rajewsky, K. Clonal expansions of CD8(+) T-cells dominate the T-cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 2000, 192, 393–404.
  • Jacobsen, M., Cepok, S., Quak, E., Happel, M., Gaber, R., Ziegler, A., Schock, S., Oertel, W.H., Sommer, N., Hemmer, B. Oligoclonal expansion of memory CD8+ T-cells in cerebrospinal fluid from multiple sclerosis patients. Brain 2002, 125, 538–550.
  • Lafaille, J.J., Keere, F.V., Hsu, A.L., Baron, J.L., Haas, W., Raine, C.S., Tonegawa, S. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 1997, 186, 307–312.
  • Windhagen, A., Newcombe, J., Dangond, F., Strand, C., Woodroofe, M.N., Cuzner, M.L., Hafler, D.A. Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J. Exp. Med. 1995, 182, 1985–1996.
  • Neumann, H., Medana, I.M., Bauer, J., Lassmann, H. Cytotoxic T-lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 2002, 25, 313–319.
  • Crawford, M.P., Yan, S.X., Ortega, S.B., Mehta, R.S., Hewitt, R.E., Price, D.A., Stastny, P., Douek, D.C., Koup, R.A., Racke, M.K., Karandikar, N.J. High prevalence of autoreactive, neuroantigen-specific CD8+ T-cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 2004, 103, 4222–4231.
  • Traugott, U., Reinherz, E.L., Raine, C.S. Multiple sclerosis: distribution of T-cell subsets within active chronic lesions. Science 1983, 219, 308–310.
  • McFarland, H.F., Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. Nat. Immunol. 2007, 8, 913–919.
  • Bettelli, E., Oukka, M., Kuchroo, V.K. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 2007, 8, 345–350.
  • Thakker, P., Leach, M.W., Kuang, W., Benoit, S.E., Leonard, J.P., Marusic, S. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 2007, 178, 2589–2598.
  • Du, C., Liu, C., Kang, J., Zhao, G., Ye, Z., Huang, S., Li, Z., Wu, Z., Pei, G. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. 2009, 10, 1252–1259.
  • Martin, A.J., Zhou, L., Miller, S.D. MicroRNA–managing the TH-17 inflammatory response. Nat. Immunol. 2009, 10, 1229–1231.
  • Huan, J., Culbertson, N., Spencer, L., Bartholomew, R., Burrows, G.G., Chou, Y.K., Bourdette, D., Ziegler, S.F., Offner, H., Vandenbark, A.A. Decreased FOXP3 levels in multiple sclerosis patients. J. Neurosci. Res. 2005, 81, 45–52.
  • Furlan, R., Bergami, A., Cantarella, D., Brambilla, E., Taniguchi, M., Dellabona, P., Casorati, G., Martino, G. Activation of invariant NKT cells by alphaGalCer administration protects mice from MOG35-55-induced EAE: critical roles for administration route and IFN-gamma. Eur. J. Immunol. 2003, 33, 1830–1838.
  • Jahng, A.W., Maricic, I., Pedersen, B., Burdin, N., Naidenko, O., Kronenberg, M., Koezuka, Y., Kumar, V. Activation of natural killer T-cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 2001, 194, 1789–1799.
  • Trajkovic, V., Vuckovic, O., Stosic-Grujicic, S., Miljkovic, D., Popadic, D., Markovic, M., Bumbasirevic, V., Backovic, A., Cvetkovic, I., Harhaji, L., Ramic, Z., Mostarica Stojkovic, M. Astrocyte-induced regulatory T-cells mitigate CNS autoimmunity. Glia 2004, 47, 168–179.
  • Kabat, E.A., Glusman, M., Knaub, V. Quantitative estimation of the albumin and gamma globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am. J. Med. 1948, 4, 653–662.
  • Sharief, M.K., Thompson, E.J. Intrathecal immunoglobulin M synthesis in multiple sclerosis. Relationship with clinical and cerebrospinal fluid parameters. Brain 1991, 114 (Pt 1A), 181–195.
  • Sharief, M.K., Hentges, R. Importance of intrathecal synthesis of IgD in multiple sclerosis. A combined clinical, immunologic, and magnetic resonance imaging study. Arch. Neurol. 1991, 48, 1076–1079.
  • Tourtellotte, W.W. The cerebrospinal fluid in multiple sclerosis. Handb. Clin. Neurol. 1985, 3, 79–130.
  • Walsh, M.J., Tourtellotte, W.W., Roman, J., Dreyer, W. Immunoglobulin G, A, and M–clonal restriction in multiple sclerosis cerebrospinal fluid and serum–analysis by two-dimensional electrophoresis. Clin. Immunol. Immunopathol. 1985, 35, 313–327.
  • Franciotta, D., Salvetti, M., Lolli, F., Serafini, B., Aloisi, F. B-cells and multiple sclerosis. Lancet Neurol. 2008, 7, 852–858.
  • Esiri, M.M. Immunoglobulin-containing cells in multiple-sclerosis plaques. Lancet 1977, 2, 478.
  • Mehta, P.D., Frisch, S., Thormar, H., Tourtellotte, W.W., Wisniewski, H.M. Bound antibody in multiple sclerosis brains. J. Neurol. Sci. 1981, 49, 91–98.
  • Lucchinetti, C., Brück, W., Parisi, J., Scheithauer, B., Rodriguez, M., Lassmann, H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 2000, 47, 707–717.
  • Prineas, J.W., Wright, R.G. Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab. Invest. 1978, 38, 409–421.
  • Storch, M.K., Piddlesden, S., Haltia, M., Iivanainen, M., Morgan, P., Lassmann, H. Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann. Neurol. 1998, 43, 465–471.
  • Gershon, R.K., Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970, 18, 723–737.
  • Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Immunologic self-tolerance maintained by activated T-cells expressing IL- 2 receptor alpha-chains (CD25): breakdown of a single mechanism of self- tolerance causes various autoimmune diseases. J. Immunol. 1995, 155, 1151–64.
  • Belkaid, Y. Regulatory T-cells and infection: a dangerous necessity. Nat. Rev. Immunol. 2007, 7, 875–888.
  • Wan, Y.Y., Flavell, R.A. TGF-beta and regulatory T-cell in immunity and autoimmunity. J. Clin. Immunol. 2008, 28, 647–659.
  • Jonuleit H., Schmitt E. The regulator cell family: distinct subsets and their interrelations. J. Immunol. 2003, 171, 6323–6327.
  • Walker, L.S., Chodos, A., Eggena, M., Dooms, H., Abbas, A.K. Antigen-dependent proliferation of CD4+ CD25+ regulatory T-cells in vivo. J. Exp. Med. 2003, 198, 249–258.
  • Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., Inaba, K., Steinman, R.M. Direct expansion of functional CD25+ CD4+ regulatory T-cells by antigen-processing dendritic cells. J. Exp. Med. 2003, 198, 235–247.
  • Mills, K.H. Regulatory T-cells: friend or foe in immunity to infection? Nat. Rev. Immunol. 2004, 4, 841–855.
  • Jordan, M.S., Boesteanu, A., Reed, A.J., Petrone, A.L., Holenbeck, A.E., Lerman, M.A., Naji, A., Caton, A.J. Thymic selection of CD4+CD25+ regulatory T-cells induced by an agonist self-peptide. Nat. Immunol. 2001, 2, 301–306.
  • Keir, M.E., Sharpe, A.H. The B7/CD28 costimulatory family in autoimmunity. Immunol. Rev. 2005, 204, 128–143.
  • Kronenberg, M., Rudensky, A. Regulation of immunity by self-reactive T-cells. Nature 2005, 435, 598–604.
  • Pacholczyk, R., Kraj, P., Ignatowicz, L. Peptide specificity of thymic selection of CD4+CD25+ T-cells. J. Immunol. 2002, 168, 613–620.
  • Pennington, D.J., Silva-Santos, B., Silberzahn, T., Escórcio-Correia, M., Woodward, M.J., Roberts, S.J., Smith, A.L., Dyson, P.J., Hayday, A.C. Early events in the thymus affect the balance of effector and regulatory T-cells. Nature 2006, 444, 1073–1077.
  • Takahashi, M., Nakamura, K., Honda, K., Kitamura, Y., Mizutani, T., Araki, Y., Kabemura, T., Chijiiwa, Y., Harada, N., Nawata, H. An inverse correlation of human peripheral blood regulatory T-cell frequency with the disease activity of ulcerative colitis. Dig. Dis. Sci. 2006, 51, 677–686.
  • Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T-cells in immunological tolerance to self and non-self. Nat. Immunol. 2005, 6, 345–352.
  • Elrefaei, M., Ventura, F.L., Baker, C.A., Clark, R., Bangsberg, D.R., Cao, H. HIV-specific IL-10-positive CD8+ T-cells suppress cytolysis and IL-2 production by CD8+ T-cells. J. Immunol. 2007, 178, 3265–3271.
  • Levings, M.K., Sangregorio, R., Sartirana, C., Moschin, A.L., Battaglia, M., Orban, P.C., Roncarolo, M.G. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J. Exp. Med. 2002, 196, 1335–1346.
  • Baecher-Allan C., Brown J.A., Freeman G.J., Hafler D.A. CD4+ CD25 high regulatory cells in human peripheral blood. J. Immunol. 2001, 167, 1245–1253.
  • Lehmann, J., Huehn, J., de la Rosa, M., Maszyna, F., Kretschmer, U., Krenn, V., Brunner, M., Scheffold, A., Hamann, A. Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25- regulatory T-cells. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 13031–13036.
  • McHugh, R.S., Whitters, M.J., Piccirillo, C.A., Young, D.A., Shevach, E.M., Collins, M., Byrne, M.C. CD4(+)CD25(+) immunoregulatory T-cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002, 16, 311–323.
  • Read S., Malmstrom V., Pefowrie F. Cytotoxic T-lymphocyte-associated antigen-4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 2000, 192, 295–302.
  • Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., Sakaguchi, S. Stimulation of CD25(+)CD4(+) regulatory T-cells through GITR breaks immunological self-tolerance. Nat. Immunol. 2002, 3, 135–142.
  • Vignali, D. How many mechanisms do regulatory T-cells need? Eur. J. Immunol. 2008, 38, 908–911.
  • Yamaguchi, T., Hirota, K., Nagahama, K., Ohkawa, K., Takahashi, T., Nomura, T., Sakaguchi, S. Control of immune responses by antigen-specific regulatory T-cells expressing the folate receptor. Immunity 2007, 27, 145–159.
  • Sakaguchi, S., Miyara, M., Costantino, C.M., Hafler, D.A. FOXP3+ regulatory T-cells in the human immune system. Nat. Rev. Immunol. 2010, 10, 490–500.
  • Fontenot, J.D., Dooley, J.L., Farr, A.G., Rudensky, A.Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 2005, 202, 901–906.
  • Roncarolo, M.G., Gregori, S. Is FOXP3 a bona fide marker for human regulatory T-cells? Eur. J. Immunol. 2008, 38, 925–927.
  • Gavin, M.A., Rasmussen, J.P., Fontenot, J.D., Vasta, V., Manganiello, V.C., Beavo, J.A., Rudensky, A.Y. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007, 445, 771–775.
  • Morgan, M.E., van Bilsen, J.H., Bakker, A.M., Heemskerk, B., Schilham, M.W., Hartgers, F.C., Elferink, B.G., van der Zanden, L., de Vries, R.R., Huizinga, T.W., Ottenhoff, T.H., Toes, R.E. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol. 2005, 66, 13–20.
  • Wang, J., Ioan-Facsinay, A., van der Voort, E.I., Huizinga, T.W., Toes, R.E. Transient expression of FOXP3 in human activated non-regulatory CD4+ T-cells. Eur. J. Immunol. 2007, 37, 129–138.
  • Tran, D.Q., Ramsey, H., Shevach, E.M. Induction of FOXP3 expression in naive human CD4+FOXP3 T-cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007, 110, 2983–2990.
  • Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., Benard, A., Van Landeghen, M., Buckner, J.H., Ziegler, S.F. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T-cells. J. Clin. Invest. 2003, 112, 1437–1443.
  • Zelenay, S., Lopes-Carvalho, T., Caramalho, I., Moraes-Fontes, M.F., Rebelo, M., Demengeot, J. Foxp3+ CD25- CD4 T-cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 4091–4096.
  • Liu, W., Putnam, A.L., Xu-Yu, Z., Szot, G.L., Lee, M.R., Zhu, S., Gottlieb, P.A., Kapranov, P., Gingeras, T.R., Fazekas de St Groth, B., Clayberger, C., Soper, D.M., Ziegler, S.F., Bluestone, J.A. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 2006, 203, 1701–1711.
  • Feger, U., Tolosa, E., Huang, Y.H., Waschbisch, A., Biedermann, T., Melms, A., Wiendl, H. HLA-G expression defines a novel regulatory T-cell subset present in human peripheral blood and sites of inflammation. Blood 2007, 110, 568–577.
  • Wiendl, H., Feger, U., Mittelbronn, M., Jack, C., Schreiner, B., Stadelmann, C., Antel, J., Brueck, W., Meyermann, R., Bar-Or, A., Kieseier, B.C., Weller, M. Expression of the immune-tolerogenic major histocompatibility molecule HLA-G in multiple sclerosis: implications for CNS immunity. Brain 2005, 128, 2689–2704.
  • Malek, T.R., Yu, A., Vincek, V., Scibelli, P., Kong, L. CD4 regulatory T-cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the non-redundant function of IL-2. Immunity 2002, 17, 167–178.
  • Paust, S., Lu, L., McCarty, N., Cantor, H. Engagement of B7 on effector T-cells by regulatory T-cells prevents autoimmune disease. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 10398–10403.
  • Sempowski, G.D., Cross, S.J., Heinly, C.S., Scearce, R.M., Haynes, B.F. CD7 and CD28 are required for murine CD4+CD25+ regulatory T-cell homeostasis and prevention of thyroiditis. J. Immunol. 2004, 172, 787–794.
  • Fontenot, J.D., Rasmussen, J.P., Gavin, M.A., Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T-cells. Nat. Immunol. 2005, 6, 1142–1151.
  • Bayer A.L., Yu A., Adeegbe D., Malek T.R. Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. J. Exp. Med. 2005, 201, 769–777.
  • Dieckmann D., Bruett C.H., Ploettner H., Lutz M.B., Schuler G. Human CD4+CD25+ regulatory, contact-dependent T-cells induce interleukin 1-producing, contact-independent type 1-like regulatory T-cells. J. Exp. Med. 2002, 196, 247–253.
  • Jonuleit H., Schmitt E., Kakirman H., Stassen M., Knop J., Enk A.H. Infectious tolerance: human CD25+ regulatory T-cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med. 2002, 196, 255–260.
  • Levings, M.K., Roncarolo, M.G. Phenotypic and functional differences between human CD4+CD25+ and type 1 regulatory T-cells. Curr. Top. Microbiol. Immunol. 2005, 293, 303–326.
  • Bacchetta, R., Sartirana, C., Levings, M.K., Bordignon, C., Narula, S., Roncarolo, M.G. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur. J. Immunol. 2002, 32, 2237–2245.
  • Battaglia, M., Gregori, S., Bacchetta, R., Roncarolo, M.G. Tr1 cells: from discovery to their clinical application. Semin. Immunol. 2006, 18, 120–127.
  • Roncarolo, M.G., Gregori, S., Battaglia, M., Bacchetta, R., Fleischhauer, K., Levings, M.K. Interleukin-10-secreting type 1 regulatory T-cells in rodents and humans. Immunol. Rev. 2006, 212, 28–50.
  • Sebastiani, S., Allavena, P., Albanesi, C., Nasorri, F., Bianchi, G., Traidl, C., Sozzani, S., Girolomoni, G., Cavani, A. Chemokine receptor expression and function in CD4+ T-lymphocytes with regulatory activity. J. Immunol. 2001, 166, 996–1002.
  • Vieira, P.L., Christensen, J.R., Minaee, S., O’Neill, E.J., Barrat, F.J., Boonstra, A., Barthlott, T., Stockinger, B., Wraith, D.C., O’Garra, A. IL-10-secreting regulatory T-cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T-cells. J. Immunol. 2004, 172, 5986–5993.
  • Groux, H., O’Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vries, J.E., Roncarolo, M.G. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997, 389, 737–742.
  • Levings M.K., Sangregorio R., Galbiati F., Squadrone S., De Waal Malefyt R., Roncarolo M.G. Ifn-alpha and il-10 induce the differentiation of human type 1 t regulatory cells1. J. Immunol. 2001, 166, 5530–5539.
  • Wakkach, A., Cottrez, F., Groux, H. Differentiation of regulatory T-cells 1 is induced by CD2 costimulation. J. Immunol. 2001, 167, 3107–3113.
  • Kemper, C., Chan, A.C., Green, J.M., Brett, K.A., Murphy, K.M., Atkinson, J.P. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 2003, 421, 388–392.
  • Barrat, F.J., Cua, D.J., Boonstra, A., Richards, D.F., Crain, C., Savelkoul, H.F., de Waal-Malefyt, R., Coffman, R.L., Hawrylowicz, C.M., O’Garra, A. In vitro generation of interleukin 10-producing regulatory CD4(+) T-cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 2002, 195, 603–616.
  • Jonuleit H., Schmitt E., Schuler G., Knop J., Enk A.H. Induction of interleukin 10-producing, non-proliferating CD4+ T-cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 2000, 192, 1213–1222.
  • Wakkach, A., Fournier, N., Brun, V., Breittmayer, J.P., Cottrez, F., Groux, H. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003, 18, 605–617.
  • Gilliet, M., Liu, Y.J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 2002, 195, 695–704.
  • Steinbrink, K., Graulich, E., Kubsch, S., Knop, J., Enk, A.H. CD4(+) and CD8(+) anergic T-cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 2002, 99, 2468–2476.
  • Roncarolo, M.G., Bacchetta, R., Bordignon, C., Narula, S., Levings, M.K. Type 1 T regulatory cells. Immunol. Rev. 2001, 182, 68–79.
  • Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A., Weiner, H.L. Regulatory T-cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994, 265, 1237–1240.
  • Fukaura H., Kent S.C., Pietrusewicz M.J., Khoury S.J., Weiner H.L., Hafler D.A. Induction of circulating myelin basic protein and proteolipid protein- specific transforming growth factor-beta1-secreting Th3 T-cells by oral administration of myelin in multiple sclerosis patients. J. Clin. Invest. 1996, 98, 70–77.
  • Weiner, H.L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol. Rev. 2001, 182, 207–214.
  • Faria, A.M., Weiner, H.L. Oral tolerance. Immunol. Rev. 2005, 206, 232–259.
  • Fontenot, J.D., Gavin, M.A., Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T-cells. Nat. Immunol. 2003, 4, 330–336.
  • Hori, S., Nomura, T., Sakaguchi, S. Control of regulatory T-cell development by the transcription factor Foxp3. Science 2003, 299, 1057–1061.
  • Ramsdell, F. Foxp3 and natural regulatory T-cells: key to a cell lineage? Immunity 2003, 19, 165–168.
  • Shevach E.M. CD4+CD25+ suppressor T-cells: more questions than answers. Nat. Rev. Immunol. 2002, 2, 389–400.
  • Takahashi T., Tagami T., Yamazaki S., Uede T., Shimizu J., Sakaguchi N., Mak T.W., Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T-cells constitutively expressing cytotoxic T-lymphocyte-associated antigen-4. J. Exp. Med. 2000, 192, 303–309.
  • Chen, W., Jin, W., Hardegen, N., Lei, K.J., Li, L., Marinos, N., McGrady, G., Wahl, S.M. Conversion of peripheral CD4+CD25- naive T-cells to CD4+CD25+ regulatory T-cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003, 198, 1875–1886.
  • Workman, C.J., Szymczak-Workman, A.L., Collison, L.W., Pillai, M.R., Vignali, D.A. The development and function of regulatory T-cells. Cell. Mol. Life Sci. 2009, 66, 2603–2622.
  • Mirshafiey, A., Mohsenzadegan, M. TGF-beta as a promising option in the treatment of multiple sclerosis. Neuropharmacology 2009, 56, 929–936.
  • Smith, T.R., Kumar, V. Revival of CD8+ Treg-mediated suppression. Trends Immunol. 2008, 29, 337–342.
  • Kiniwa, Y., Miyahara, Y., Wang, H.Y., Peng, W., Peng, G., Wheeler, T.M., Thompson, T.C., Old, L.J., Wang, R.F. CD8+ Foxp3+ regulatory T-cells mediate immunosuppression in prostate cancer. Clin. Cancer Res. 2007, 13, 6947–6958.
  • Colovai, A.I., Mirza, M., Vlad, G., Wang, S., Ho, E., Cortesini, R., Suciu-Foca, N. Regulatory CD8+CD28- T-cells in heart transplant recipients. Hum. Immunol. 2003, 64, 31–37.
  • Cosmi, L., Liotta, F., Lazzeri, E., Francalanci, M., Angeli, R., Mazzinghi, B., Santarlasci, V., Manetti, R., Vanini, V., Romagnani, P., Maggi, E., Romagnani, S., Annunziato, F. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 2003, 102, 4107–4114.
  • Xystrakis, E., Dejean, A.S., Bernard, I., Druet, P., Liblau, R., Gonzalez-Dunia, D., Saoudi, A. Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 2004, 104, 3294–3301.
  • Chang, C.C., Ciubotariu, R., Manavalan, J.S., Yuan, J., Colovai, A.I., Piazza, F., Lederman, S., Colonna, M., Cortesini, R., Dalla-Favera, R., Suciu-Foca, N. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 2002, 3, 237–243.
  • Filaci, G., Fravega, M., Negrini, S., Procopio, F., Fenoglio, D., Rizzi, M., Brenci, S., Contini, P., Olive, D., Ghio, M., Setti, M., Accolla, R.S., Puppo, F., Indiveri, F. Non-antigen specific CD8+ T suppressor lymphocytes originate from CD8+CD28- T-cells and inhibit both T-cell proliferation and CTL function. Hum. Immunol. 2004, 65, 142–156.
  • Joosten, S.A., Ottenhoff, T.H. Human CD4 and CD8 regulatory T-cells in infectious diseases and vaccination. Hum. Immunol. 2008, 69, 760–770.
  • Mahic, M., Henjum, K., Yaqub, S., Bjørnbeth, B.A., Torgersen, K.M., Taskén, K., Aandahl, E.M. Generation of highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) regulatory T-cells by continuous antigen stimulation. Eur. J. Immunol. 2008, 38, 640–646.
  • Myers, L., Croft, M., Kwon, B.S., Mittler, R.S., Vella, A.T. Peptide-specific CD8 T regulatory cells use IFN-gamma to elaborate TGF-beta-based suppression. J. Immunol. 2005, 174, 7625–7632.
  • Cone, R.E., Chattopadhyay, S., Sharafieh, R., Lemire, Y., O’Rourke, J. The suppression of hypersensitivity by ocular-induced CD8(+) T-cells requires compatibility in the Qa-1 haplotype. Immunol. Cell Biol. 2009, 87, 241–248.
  • Niederkorn, J.Y. Emerging concepts in CD8(+) T regulatory cells. Curr. Opin. Immunol. 2008, 20, 327–331.
  • Fowlkes, B.J., Kruisbeek, A.M., Ton-That, H., Weston, M.A., Coligan, J.E., Schwartz, R.H., Pardoll, D.M. A novel population of T-cell receptor alpha beta-bearing thymocytes which predominantly expresses a single V beta gene family. Nature 1987, 329, 251–254.
  • MacDonald, H.R. Development and selection of NKT cells. Curr. Opin. Immunol. 2002, 14, 250–254.
  • Godfrey, D.I., Hammond, K.J., Poulton, L.D., Smyth, M.J., Baxter, A.G. NKT cells: facts, functions and fallacies. Immunol. Today 2000, 21, 573–583.
  • Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 2005, 23, 877–900.
  • Kinjo, Y., Wu, D., Kim, G., Xing, G.W., Poles, M.A., Ho, D.D., Tsuji, M., Kawahara, K., Wong, C.H., Kronenberg, M. Recognition of bacterial glycosphingolipids by natural killer T-cells. Nature 2005, 434, 520–525.
  • Mattner, J., Debord, K.L., Ismail, N., Goff, R.D., Cantu, C.3rd, Zhou, D., Saint-Mezard, P., Wang, V., Gao, Y., Yin, N., Hoebe, K., Schneewind, O., Walker, D., Beutler, B., Teyton, L., Savage, P.B., Bendelac, A. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005, 434, 525–529.
  • La C.A., Van K.L., Fu D.S. CD4+CD25+ Tregs and NKT cells: regulators regulating regulators. Trends. Immunol. 2006, 27, 322–327.
  • Hammond, K.J., Pelikan, S.B., Crowe, N.Y., Randle-Barrett, E., Nakayama, T., Taniguchi, M., Smyth, M.J., van Driel, I.R., Scollay, R., Baxter, A.G., Godfrey, D.I. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 1999, 29, 3768–3781.
  • Godfrey, D.I., Berzins, S.P. Control points in NKT-cell development. Nat. Rev. Immunol. 2007, 7, 505–518.
  • Van K.L. NKT cells: T-lymphocytes with innate effector functions. Curr. Opin. Immunol. 2007, 19, 354–364.
  • Seino, K., Taniguchi, M. Functionally distinct NKT cell subsets and subtypes. J. Exp. Med. 2005, 202, 1623–1626.
  • Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J., Van Kaer, L. NKT cells: what’s in a name? Nat. Rev. Immunol. 2004, 4, 231–237.
  • Salio, M., Silk, J.D., Cerundolo, V. Recent advances in processing and presentation of CD1 bound lipid antigens. Curr. Opin. Immunol. 2010, 22, 81–88.
  • Bendelac, A., Savage, P.B., Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 2007, 25, 297–336.
  • Gumperz, J.E., Miyake, S., Yamamura, T., Brenner, M.B. Functionally distinct subsets of CD1d-restricted natural killer T-cells revealed by CD1d tetramer staining. J. Exp. Med. 2002, 195, 625–636.
  • Kronenberg, M., Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2002, 2, 557–568.
  • Coquet, J.M., Kyparissoudis, K., Pellicci, D.G., Besra, G., Berzins, S.P., Smyth, M.J., Godfrey, D.I. IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J. Immunol. 2007, 178, 2827–2834.
  • Diao, H., Kon, S., Iwabuchi, K., Kimura, C., Morimoto, J., Ito, D., Segawa, T., Maeda, M., Hamuro, J., Nakayama, T., Taniguchi, M., Yagita, H., Van Kaer, L., Onóe, K., Denhardt, D., Rittling, S., Uede, T. Osteopontin as a mediator of NKT cell function in T-cell-mediated liver diseases. Immunity 2004, 21, 539–550.
  • Leite-de-Moraes M.C., Lisbonne M., Arnould A., Machavoine F., Herbelin A., Dy M., Schneider E. Ligand-activated natural killer T-lymphocytes promptly produce IL-3 and GM-CSF in vivo: relevance to peripheral myeloid recruitment. Eur. J. Immunol. 2002, 32, 1897–1904.
  • Rachitskaya, A.V., Hansen, A.M., Horai, R., Li, Z., Villasmil, R., Luger, D., Nussenblatt, R.B., Caspi, R.R. Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol. 2008, 180, 5167–5171.
  • Yamamura, T., Sakuishi, K., Illés, Z., Miyake, S. Understanding the behavior of invariant NKT cells in autoimmune diseases. J. Neuroimmunol. 2007, 191, 8–15.
  • Benlagha, K., Weiss, A., Beavis, A., Teyton, L., Bendelac, A. In vivo identification of glycolipid antigen-specific T-cells using fluorescent CD1d tetramers. J. Exp. Med. 2000, 191, 1895–1903.
  • Benlagha, K., Kyin, T., Beavis, A., Teyton, L., Bendelac, A. A thymic precursor to the NK T-cell lineage. Science 2002, 296, 553–555.
  • Eberl, G., MacDonald, H.R. Rapid death and regeneration of NKT cells in anti-CD3epsilon- or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity 1998, 9, 345–353.
  • Gapin, L., Matsuda, J.L., Surh, C.D., Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2001, 2, 971–978.
  • Hammond, K., Cain, W., van Driel, I., Godfrey, D. Three day neonatal thymectomy selectively depletes NK1.1+ T-cells. Int. Immunol. 1998, 10, 1491–1499.
  • Makino, Y., Kanno, R., Koseki, H., Taniguchi, M. Development of Valpha4+ NK T-cells in the early stages of embryogenesis. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 6516–6520.
  • Schümann, J., Pittoni, P., Tonti, E., Macdonald, H.R., Dellabona, P., Casorati, G. Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J. Immunol. 2005, 175, 7303–7310.
  • Matsuda, J.L., Gapin, L. Developmental program of mouse Valpha14i NKT cells. Curr. Opin. Immunol. 2005, 17, 122–130.
  • Borowski, C., Bendelac, A. Signaling for NKT cell development: the SAP-FynT connection. J. Exp. Med. 2005, 201, 833–836.
  • Ohteki T., Ho S., Suzuki H., Mak T.W., Ohashi P.S. Role for IL-15/IL-15 receptor beta-chain in natural killer 1.1+ T-cell receptor-alphabeta+ cell development. J. Immunol. 1997, 159, 5931–5935.
  • Vicari, A.P., Herbelin, A., Leite-de-Moraes, M.C., Von Freeden-Jeffry, U., Murray, R., Zlotnik, A. NK1.1+ T-cells from IL-7-deficient mice have a normal distribution and selection but exhibit impaired cytokine production. Int. Immunol. 1996, 8, 1759–1766.
  • Gadue, P., Morton, N., Stein, P.L. The Src family tyrosine kinase Fyn regulates natural killer T-cell development. J. Exp. Med. 1999, 190, 1189–1196.
  • Gadue, P., Stein, P.L. NK T-cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J. Immunol. 2002, 169, 2397–2406.
  • Kim, P.J., Pai, S.Y., Brigl, M., Besra, G.S., Gumperz, J., Ho, I.C. GATA-3 regulates the development and function of invariant NKT cells. J. Immunol. 2006, 177, 6650–6659.
  • Lacorazza, H.D., Miyazaki, Y., Di Cristofano, A., Deblasio, A., Hedvat, C., Zhang, J., Cordon-Cardo, C., Mao, S., Pandolfi, P.P., Nimer, S.D. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 2002, 17, 437–449.
  • Matsuda, J.L., Zhang, Q., Ndonye, R., Richardson, S.K., Howell, A.R., Gapin, L. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood 2006, 107, 2797–2805.
  • Ohteki, T., Yoshida, H., Matsuyama, T., Duncan, G.S., Mak, T.W., Ohashi, P.S. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T-cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T-cells. J. Exp. Med. 1998, 187, 967–972.
  • Walunas, T.L., Wang, B., Wang, C.R., Leiden, J.M. Cutting edge: the Ets-1 transcription factor is required for the development of NK T-cells in mice. J. Immunol. 2000, 164, 2857–2860.
  • Zullo, A.J., Benlagha, K., Bendelac, A., Taparowsky, E.J. Sensitivity of NK1.1-negative NKT cells to transgenic BATF defines a role for activator protein-1 in the expansion and maturation of immature NKT cells in the thymus. J. Immunol. 2007, 178, 58–66.
  • Pellicci D.G., Hammond K.J.L., Uldrich A.P., Baxter A.G., Smyth M.J., Godfrey D.I. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1- CD4+ CD1d-dependent precursor stage. J. Exp. Med. 2002, 195, 835–844.
  • Ohteki T., MacDonald H.R. Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4-8- subsets of natural killer 1.1+ T-cell receptor-alphabeta+ cells in the liver of mice. J. Exp. Med. 1994, 180, 699–704.
  • Bettini, M., Vignali, D.A. Regulatory T-cells and inhibitory cytokines in autoimmunity. Curr. Opin. Immunol. 2009, 21, 612–618.
  • Joosten, S.A., van Meijgaarden, K.E., Savage, N.D., de Boer, T., Triebel, F., van der Wal, A., de Heer, E., Klein, M.R., Geluk, A., Ottenhoff, T.H. Identification of a human CD8+ regulatory T-cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8029–8034.
  • Vignali, D.A., Collison, L.W., Workman, C.J. How regulatory T-cells work. Nat. Rev. Immunol. 2008, 8, 523–532.
  • Sun L., Yi S., O’ Connell P.J. IL-10 is required for human CD4(+)CD25(+) regulatory T-cell-mediated suppression of xenogeneic proliferation. Immunol. Cell. Biol. 2010, 88, 477–485.
  • Ablamunits V., Bisikirska B.C., Herold K.C. Human regulatory CD8+ T-cells: the involvement of cytokines. Ann. N. Y. Acad. Sci. 2008, 1150, 234–238.
  • Collison, L.W., Workman, C.J., Kuo, T.T., Boyd, K., Wang, Y., Vignali, K.M., Cross, R., Sehy, D., Blumberg, R.S., Vignali, D.A. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007, 450, 566–569.
  • Gondek D.C., Lu L.F., Quezada S.A., Sakaguchi S., Noelle R.J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 2005, 174, 1783–1786.
  • Cao, X., Cai, S.F., Fehniger, T.A., Song, J., Collins, L.I., Piwnica-Worms, D.R., Ley, T.J. Granzyme B and perforin are important for regulatory T-cell-mediated suppression of tumor clearance. Immunity 2007, 27, 635–646.
  • Zhao, D.M., Thornton, A.M., DiPaolo, R.J., Shevach, E.M. Activated CD4+CD25+ T-cells selectively kill B-lymphocytes. Blood 2006, 107, 3925–3932.
  • Gondek D.C., Lu L.F., Quezada S.A., Sakaguchi S., Noelle R.J. Cutting edge: Contact-mediated suppression by CD4+CD25 + regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 2005, 174, 1783–1786.
  • Arase H., Arase N., Kobayashi Y., Nishimura Y., Yonehara S., Onoe K. Cytotoxicity of fresh NK1.1+ T-cell receptor-alphabeta+ thymocytes against a CD4+CD8+ thymocyte population associated with intact Fas antigen expression on the target. J. Exp. Med. 1994, 180, 423–432.
  • Pandiyan, P., Zheng, L., Ishihara, S., Reed, J., Lenardo, M.J. CD4+CD25+Foxp3+ regulatory T-cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T-cells. Nat. Immunol. 2007, 8, 1353–1362.
  • Deaglio, S., Dwyer, K.M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J.F., Enjyoji, K., Linden, J., Oukka, M., Kuchroo, V.K., Strom, T.B., Robson, S.C. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T-cells mediates immune suppression. J. Exp. Med. 2007, 204, 1257–1265.
  • Borsellino, G., Kleinewietfeld, M., Di Mitri, D., Sternjak, A., Diamantini, A., Giometto, R., Höpner, S., Centonze, D., Bernardi, G., Dell’Acqua, M.L., Rossini, P.M., Battistini, L., Rötzschke, O., Falk, K. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007, 110, 1225–1232.
  • Sojka, D.K., Huang, Y.H., Fowell, D.J. Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology 2008, 124, 13–22.
  • Egen, J.G., Allison, J.P. Cytotoxic T-lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002, 16, 23–35.
  • Fallarino, F., Grohmann, U., Hwang, K.W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M.L., Fioretti, M.C., Alegre, M.L., Puccetti, P. Modulation of tryptophan catabolism by regulatory T-cells. Nat. Immunol. 2003, 4, 1206–1212.
  • Greenwald, R.J., Freeman, G.J., Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 2005, 23, 515–548.
  • Huang, C.T., Workman, C.J., Flies, D., Pan, X., Marson, A.L., Zhou, G., Hipkiss, E.L., Ravi, S., Kowalski, J., Levitsky, H.I., Powell, J.D., Pardoll, D.M., Drake, C.G., Vignali, D.A. Role of LAG-3 in regulatory T-cells. Immunity 2004, 21, 503–513.
  • Mellor, A.L., Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 2004, 4, 762–774.
  • Oderup, C., Cederbom, L., Makowska, A., Cilio, C.M., Ivars, F. Cytotoxic T-lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 2006, 118, 240–249.
  • Shevach, E.M., McHugh, R.S., Piccirillo, C.A., Thornton, A.M. Control of T-cell activation by CD4+ CD25+ suppressor T-cells. Immunol. Rev. 2001, 182, 58–67.
  • Suciu-Foca, N., Cortesini, R. Central role of ILT3 in the T suppressor cell cascade. Cell. Immunol. 2007, 248, 59–67.
  • Anderton, S.M. Avoiding autoimmune disease–T cells know their limits. Trends Immunol. 2006, 27, 208–214.
  • Sakaguchi S., Fukuma K., Kuribayashi K., Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T-cell subset. I. Evidence for the active participiation of T-cells in natural self-tolerance; deficit of a T-cell subset as a possible cause of autoimmune disease. J. Exp. Med. 1985, 161, 72–87.
  • Korn, T., Reddy, J., Gao, W., Bettelli, E., Awasthi, A., Petersen, T.R., Bäckström, B.T., Sobel, R.A., Wucherpfennig, K.W., Strom, T.B., Oukka, M., Kuchroo, V.K. Myelin-specific regulatory T-cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 2007, 13, 423–431.
  • Liu, Y., Teige, I., Birnir, B., Issazadeh-Navikas, S. Neuron-mediated generation of regulatory T-cells from encephalitogenic T-cells suppresses EAE. Nat. Med. 2006, 12, 518–525.
  • Adda, D.H., Beraud, E., Depieds, R. Evidence for suppressor cells in Lewis rats’ experimental allergic encephalomyelitis. Eur. J. Immunol. 1977, 7, 620–623.
  • Karpus, W.J., Swanborg, R.H. CD4+ suppressor cells differentially affect the production of IFN-gamma by effector cells of experimental autoimmune encephalomyelitis. J. Immunol. 1989, 143, 3492–3497.
  • O’Connor, R.A., Anderton, S.M. Foxp3+ regulatory T-cells in the control of experimental CNS autoimmune disease. J. Neuroimmunol. 2008, 193, 1–11.
  • O’Connor, R.A., Malpass, K.H., Anderton, S.M. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T-cells. J. Immunol. 2007, 179, 958–966.
  • Haas, J., Korporal, M., Balint, B., Fritzsching, B., Schwarz, A., Wildemann, B. Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4(+)CD25(+)FOXP3(+)CD31(+) T-cells in patients with multiple sclerosis. J. Neuroimmunol. 2009, 216, 113–117.
  • Vandenbark, A.A., Huan, J., Agotsch, M., La Tocha, D., Goelz, S., Offner, H., Lanker, S., Bourdette, D. Interferon-beta-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J. Neuroimmunol. 2009, 215, 125–128.
  • Xu, L., Xu, Z., Xu, M. Glucocorticoid treatment restores the impaired suppressive function of regulatory T-cells in patients with relapsing-remitting multiple sclerosis. Clin. Exp. Immunol. 2009, 158, 26–30.
  • Kohm, A.P., Carpentier, P.A., Anger, H.A., Miller, S.D. Cutting edge: CD4+CD25+ regulatory T-cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 2002, 169, 4712–4716.
  • Lafaille, J.J., Nagashima, K., Katsuki, M., Tonegawa, S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T-cell receptor transgenic mice. Cell 1994, 78, 399–408.
  • Hori, S., Haury, M., Coutinho, A., Demengeot, J. Specificity requirements for selection and effector functions of CD25+4+ regulatory T-cells in anti-myelin basic protein T-cell receptor transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 8213–8218.
  • McGeachy, M.J., Stephens, L.A., Anderton, S.M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 2005, 175, 3025–3032.
  • Kohm, A.P., Carpentier, P.A., Miller, S.D. Regulation of experimental autoimmune encephalomyelitis (EAE) by CD4+CD25+ regulatory T-cells. Novartis Found. Symp. 2003, 252, 45–52; discussion 52.
  • Matsumoto, Y., Sakuma, H., Kohyama, K., Park, I.K. Paralysis of CD4(+)CD25(+) regulatory T-cell response in chronic autoimmune encephalomyelitis. J. Neuroimmunol. 2007, 187, 44–54.
  • Olivares-Villagomez D., Wang Y., Lafaille J.J. Regulatory CD4+ T-cells expressing endogenous T-cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J. Exp. Med. 1998, 188, 1883–1894.
  • Curotto De Lafaille M.A., Lino A.C., Kutchukhidze N., Lafaille J.J. CD25- T-cells generate CD25+Foxp3+ regulatory T-cells by peripheral expansion. J. Immunol. 2004, 173, 7259–7268.
  • Zozulya, A.L., Wiendl, H. The role of regulatory T-cells in multiple sclerosis. Nat. Clin. Pract. Neurol. 2008, 4, 384–398.
  • Gärtner, D., Hoff, H., Gimsa, U., Burmester, G.R., Brunner-Weinzierl, M.C. CD25 regulatory T-cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J. Neuroimmunol. 2006, 172, 73–84.
  • Oh, U., Blevins, G., Griffith, C., Richert, N., Maric, D., Lee, C.R., McFarland, H., Jacobson, S. Regulatory T-cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch. Neurol. 2009, 66, 471–479.
  • Reddy, J., Illes, Z., Zhang, X., Encinas, J., Pyrdol, J., Nicholson, L., Sobel, R.A., Wucherpfennig, K.W., Kuchroo, V.K. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15434–15439.
  • Reddy, J., Waldner, H., Zhang, X., Illes, Z., Wucherpfennig, K.W., Sobel, R.A., Kuchroo, V.K. Cutting edge: CD4+CD25+ regulatory T-cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J. Immunol. 2005, 175, 5591–5595.
  • Zhang, X., Koldzic, D.N., Izikson, L., Reddy, J., Nazareno, R.F., Sakaguchi, S., Kuchroo, V.K., Weiner, H.L. IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T-cells. Int. Immunol. 2004, 16, 249–256.
  • Cabbage, S.E., Huseby, E.S., Sather, B.D., Brabb, T., Liggitt, D., Goverman, J. Regulatory T-cells maintain long-term tolerance to myelin basic protein by inducing a novel, dynamic state of T-cell tolerance. J. Immunol. 2007, 178, 887–896.
  • Tischner, D., Weishaupt, A., van den Brandt, J., Müller, N., Beyersdorf, N., Ip, C.W., Toyka, K.V., Hünig, T., Gold, R., Kerkau, T., Reichardt, H.M. Polyclonal expansion of regulatory T-cells interferes with effector cell migration in a model of multiple sclerosis. Brain 2006, 129, 2635–2647.
  • Borsellino G., Kleinewietfeld M., Di Mitri D., Sternjak A., Diamantini A., Giometto R., Höpner S., Centonze D., Bernardi G., Dell’Acqua M.L., Rossini P.M., Battistini L., Rötzschke O., Falk K. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007, 110, 1225-–1232.
  • Feger, U., Luther, C., Poeschel, S., Melms, A., Tolosa, E., Wiendl, H. Increased frequency of CD4+ CD25+ regulatory T-cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin. Exp. Immunol. 2007, 147, 412–418.
  • Haas, J., Hug, A., Viehöver, A., Fritzsching, B., Falk, C.S., Filser, A., Vetter, T., Milkova, L., Korporal, M., Fritz, B., Storch-Hagenlocher, B., Krammer, P.H., Suri-Payer, E., Wildemann, B. Reduced suppressive effect of CD4+CD25high regulatory T-cells on the T-cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol. 2005, 35, 3343–3352.
  • Saresella, M., Marventano, I., Longhi, R., Lissoni, F., Trabattoni, D., Mendozzi, L., Caputo, D., Clerici, M. CD4+CD25+FoxP3+PD1- regulatory T-cells in acute and stable relapsing-remitting multiple sclerosis and their modulation by therapy. FASEB J. 2008, 22, 3500–3508.
  • Huang, Y.H., Zozulya, A.L., Weidenfeller, C., Metz, I., Buck, D., Toyka, K.V., Brück, W., Wiendl, H. Specific central nervous system recruitment of HLA-G(+) regulatory T-cells in multiple sclerosis. Ann. Neurol. 2009, 66, 171–183.
  • Airas, L., Nikula, T., Huang, Y.H., Lahesmaa, R., Wiendl, H. Postpartum-activation of multiple sclerosis is associated with down-regulation of tolerogenic HLA-G. J. Neuroimmunol. 2007, 187, 205–211.
  • Frisullo, G., Nociti, V., Iorio, R., Patanella, A.K., Caggiula, M., Marti, A., Sancricca, C., Angelucci, F., Mirabella, M., Tonali, P.A., Batocchi, A.P. Regulatory T-cells fail to suppress CD4T+-bet+ T-cells in relapsing multiple sclerosis patients. Immunology 2009, 127, 418–428.
  • Fransson, M.E., Liljenfeldt, L.S., Fagius, J., Tötterman, T.H., Loskog, A.S. The T-cell pool is anergized in patients with multiple sclerosis in remission. Immunology 2009, 126, 92–101.
  • McKay, F.C., Swain, L.I., Schibeci, S.D., Rubio, J.P., Kilpatrick, T.J., Heard, R.N., Stewart, G.J., Booth, D.R. CD127 immunophenotyping suggests altered CD4+ T-cell regulation in primary progressive multiple sclerosis. J. Autoimmun. 2008, 31, 52–58.
  • Costantino, C.M., Baecher-Allan, C., Hafler, D.A. Multiple sclerosis and regulatory T-cells. J. Clin. Immunol. 2008, 28, 697–706.
  • Venken, K., Hellings, N., Hensen, K., Rummens, J.L., Medaer, R., D’hooghe, M.B., Dubois, B., Raus, J., Stinissen, P. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J. Neurosci. Res. 2006, 83, 1432–1446.
  • Viglietta, V., Baecher-Allan, C., Weiner, H.L., Hafler, D.A. Loss of functional suppression by CD4+CD25+ regulatory T-cells in patients with multiple sclerosis. J. Exp. Med. 2004, 199, 971–979.
  • Ma, A., Xiong, Z., Hu, Y., Qi, S., Song, L., Dun, H., Zhang, L., Lou, D., Yang, P., Zhao, Z., Wang, X., Zhang, D., Daloze, P., Chen, H. Dysfunction of IL-10-producing type 1 regulatory T-cells and CD4(+)CD25(+) regulatory T-cells in a mimic model of human multiple sclerosis in Cynomolgus monkeys. Int. Immunopharmacol. 2009, 9, 599–608.
  • Venken, K., Hellings, N., Broekmans, T., Hensen, K., Rummens, J.L., Stinissen, P. Natural naive CD4+CD25+CD127low regulatory T-cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J. Immunol. 2008, 180, 6411–6420.
  • Haas, J., Fritzsching, B., Trübswetter, P., Korporal, M., Milkova, L., Fritz, B., Vobis, D., Krammer, P.H., Suri-Payer, E., Wildemann, B. Prevalence of newly generated naive regulatory T-cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J. Immunol. 2007, 179, 1322–1330.
  • Broux, B., Hellings, N., Venken, K., Rummens, J.L., Hensen, K., Van Wijmeersch, B., Stinissen, P. Haplotype 4 of the multiple sclerosis-associated interleukin-7 receptor alpha gene influences the frequency of recent thymic emigrants. Genes Immun. 2010, 11, 326–333.
  • Baecher-Allan, C., Hafler, D.A. Suppressor T-cells in human diseases. J. Exp. Med. 2004, 200, 273–276.
  • Korporal, M., Haas, J., Balint, B., Fritzsching, B., Schwarz, A., Moeller, S., Fritz, B., Suri-Payer, E., Wildemann, B. Interferon beta-induced restoration of regulatory T-cell function in multiple sclerosis is prompted by an increase in newly generated naive regulatory T-cells. Arch. Neurol. 2008, 65, 1434–1439.
  • Michel, L., Berthelot, L., Pettré, S., Wiertlewski, S., Lefrère, F., Braudeau, C., Brouard, S., Soulillou, J.P., Laplaud, D.A. Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. J. Clin. Invest. 2008, 118, 3411–3419.
  • Liu, G.Z., Gomes, A.C., Fang, L.B., Gao, X.G., Hjelmstrom, P. Decreased 4-1BB expression on CD4+CD25 high regulatory T-cells in peripheral blood of patients with multiple sclerosis. Clin. Exp. Immunol. 2008, 154, 22–29.
  • Fritzsching, B., Korporal, M., Haas, J., Krammer, P.H., Suri-Payer, E., Wildemann, B. Similar sensitivity of regulatory T-cells towards CD95L-mediated apoptosis in patients with multiple sclerosis and healthy individuals. J. Neurol. Sci. 2006, 251, 91–97.
  • Bettelli, E., Das, M.P., Howard, E.D., Weiner, H.L., Sobel, R.A., Kuchroo, V.K. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 1998, 161, 3299–3306.
  • Crisi, G.M., Santambrogio, L., Hochwald, G.M., Smith, S.R., Carlino, J.A., Thorbecke, G.J. Staphylococcal enterotoxin B and tumor necrosis factor-alpha-induced relapses of experimental allergic encephalomyelitis: protection by transforming growth factor-beta and interleukin-10. Eur. J. Immunol. 1995, 25, 3035–3040.
  • Astier, A.L., Hafler, D.A. Abnormal Tr1 differentiation in multiple sclerosis. J. Neuroimmunol. 2007, 191, 70–78.
  • Balashov, K.E., Comabella, M., Ohashi, T., Khoury, S.J., Weiner, H.L. Defective regulation of IFNgamma and IL-12 by endogenous IL-10 in progressive MS. Neurology 2000, 55, 192–198.
  • Soldan, S.S., Alvarez Retuerto, A.I., Sicotte, N.L., Voskuhl, R.R. Dysregulation of IL-10 and IL-12p40 in secondary progressive multiple sclerosis. J. Neuroimmunol. 2004, 146, 209–215.
  • Ding, Q., Lu, L., Wang, B., Zhou, Y., Jiang, Y., Zhou, X., Xin, L., Jiao, Z., Chou, K.Y. B7H1-Ig fusion protein activates the CD4+ IFN-gamma receptor+ type 1 T regulatory subset through IFN-gamma-secreting Th1 cells. J. Immunol. 2006, 177, 3606–3614.
  • Zang, Y.C., Hong, J., Tejada-Simon, M.V., Li, S., Rivera, V.M., Killian, J.M., Zhang, J.Z. Th2 immune regulation induced by T-cell vaccination in patients with multiple sclerosis. Eur. J. Immunol. 2000, 30, 908–913.
  • Putheti, P., Soderstrom, M., Link, H., Huang, Y.M. Effect of glatiramer acetate (Copaxone) on CD4+CD25high T regulatory cells and their IL-10 production in multiple sclerosis. J. Neuroimmunol. 2003, 144, 125–131.
  • Perrella, O., Sbreglia, C., Perrella, M., Spetrini, G., Gorga, F., Pezzella, M., Perrella, A., Atripaldi, L., Carrieri, P. Interleukin-10 and tumor necrosis factor-alpha: model of immunomodulation in multiple sclerosis. Neurol. Res. 2006, 28, 193–195.
  • Krakauer, M., Sorensen, P., Khademi, M., Olsson, T., Sellebjerg, F. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression. Mult. Scler. 2008, 14, 622–630.
  • Astier, A.L. T-cell regulation by CD46 and its relevance in multiple sclerosis. Immunology 2008, 124, 149–154.
  • Astier, A.L., Meiffren, G., Freeman, S., Hafler, D.A. Alterations in CD46-mediated Tr1 regulatory T-cells in patients with multiple sclerosis. J. Clin. Invest. 2006, 116, 3252–3257.
  • Martinez-Forero, I., Garcia-Munoz, R., Martinez-Pasamar, S., Inoges, S., Lopez-Diaz de Cerio, A., Palacios, R., Sepulcre, J., Moreno, B., Gonzalez, Z., Fernandez-Diez, B., Melero, I., Bendandi, M., Villoslada, P. IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur. J. Immunol. 2008, 38, 576–586.
  • Hafler D.A., Kent S.C., Pietrusewicz M.J., Khoury S.J., Weiner H.L., Fukaura H. Oral administration of myelin induces antigen-specific TGF-beta1 secreting T-cells in patients with multiple sclerosis. Ann. N. Y. Acad. Sci. 1997, 835, 120–131.
  • Li, M.O., Wan, Y.Y., Flavell, R.A. T-cell-produced transforming growth factor-beta1 controls T-cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 2007, 26, 579–591.
  • Chen M.L., Yan B.S., Bando Y., Kuchroo V.K., Weiner H.L. Latency-associated peptide identifies a novel CD4+CD25+ regulatory T-cell subset with TGFbeta-mediated function and enhanced suppression of experimental autoimmune encephalomyelitis. J. Immunol. 2008, 180, 7327–7337.
  • Letterio, J.J., Roberts, A.B. Regulation of immune responses by TGF-beta. Annu. Rev. Immunol. 1998, 16, 137–161.
  • Weaver, C.T., Harrington, L.E., Mangan, P.R., Gavrieli, M., Murphy, K.M. Th17: an effector CD4 T-cell lineage with regulatory T-cell ties. Immunity 2006, 24, 677–688.
  • Bisikirska, B., Colgan, J., Luban, J., Bluestone, J.A., Herold, K.C. TCR stimulation with modified anti-CD3 mAb expands CD8+ T-cell population and induces CD8+CD25+ Tregs. J. Clin. Invest. 2005, 115, 2904–2913.
  • Brimnes, J., Allez, M., Dotan, I., Shao, L., Nakazawa, A., Mayer, L. Defects in CD8+ regulatory T-cells in the lamina propria of patients with inflammatory bowel disease. J. Immunol. 2005, 174, 5814–5822.
  • Jarvis, L.B., Matyszak, M.K., Duggleby, R.C., Goodall, J.C., Hall, F.C., Gaston, J.S. Autoreactive human peripheral blood CD8+ T-cells with a regulatory phenotype and function. Eur. J. Immunol. 2005, 35, 2896–2908.
  • Tennakoon, D.K., Mehta, R.S., Ortega, S.B., Bhoj, V., Racke, M.K., Karandikar, N.J. Therapeutic induction of regulatory, cytotoxic CD8+ T-cells in multiple sclerosis. J. Immunol. 2006, 176, 7119–7129.
  • Crucian, B., Dunne, P., Friedman, H., Ragsdale, R., Pross, S., Widen, R. Alterations in levels of CD28-/CD8+ suppressor cell precursor and CD45RO+/CD4+ memory T-lymphocytes in the peripheral blood of multiple sclerosis patients. Clin. Diagn. Lab. Immunol. 1995, 2, 249–252.
  • Antel, J.P., Rosenkoetter, M., Reder, A., Oger, J.J., Arnason, B.G. Multiple sclerosis: relation of in vitro IgG secretion to T suppressor cell number and function. Neurology 1984, 34, 1155–1160.
  • Karandikar N.J., Crawford M.P., Yan X., Ratts R.B., Brenchley J.M., Ambrozak D.R., Lovett-Racke A.E., Frohman E.M., Stastny P., Douek D.C., Koup R.A., Racke M.K. Glatiramer acetate (Copaxone) therapy induces CD8+ T-cell responses in patients with multiple sclerosis. J. Clin. Invest. 2002, 109, 641–649.
  • Correale, J., Villa, A. Isolation and characterization of CD8+ regulatory T-cells in multiple sclerosis. J. Neuroimmunol. 2008, 195, 121–134.
  • Lee, Y.H., Ishida, Y., Rifa’i, M., Shi, Z., Isobe, K., Suzuki, H. Essential role of CD8+CD122+ regulatory T-cells in the recovery from experimental autoimmune encephalomyelitis. J. Immunol. 2008, 180, 825–832.
  • Najafian, N., Chitnis, T., Salama, A.D., Zhu, B., Benou, C., Yuan, X., Clarkson, M.R., Sayegh, M.H., Khoury, S.J. Regulatory functions of CD8+CD28- T-cells in an autoimmune disease model. J. Clin. Invest. 2003, 112, 1037–1048.
  • York, N.R., Mendoza, J.P., Ortega, S.B., Benagh, A., Tyler, A.F., Firan, M., Karandikar, N.J. Immune regulatory CNS-reactive CD8+T cells in experimental autoimmune encephalomyelitis. J. Autoimmun. 2010, 35, 33–44.
  • Aristimuño, C., Navarro, J., de Andrés, C., Martínez-Ginés, L., Giménez-Roldán, S., Fernández-Cruz, E., Sánchez-Ramón, S. Expansion of regulatory CD8+ T-lymphocytes and fall of activated CD8+ T-lymphocytes after i.v. methyl-prednisolone for multiple sclerosis relapse. J. Neuroimmunol. 2008, 204, 131–135.
  • Ronchi, F., Falcone, M. Immune regulation by invariant NKT cells in autoimmunity. Front. Biosci. 2008, 13, 4827–4837.
  • Démoulins, T., Gachelin, G., Bequet, D., Dormont, D. A biased Valpha24+ T-cell repertoire leads to circulating NKT-cell defects in a multiple sclerosis patient at the onset of his disease. Immunol. Lett. 2003, 90, 223–228.
  • Blewett, M.M. Hypothesized role of galactocerebroside and NKT cells in the etiology of multiple sclerosis. Med. Hypotheses 2008, 70, 826–830.
  • Hammond, K.J., Godfrey, D.I. NKT cells: potential targets for autoimmune disease therapy? Tissue Antigens 2002, 59, 353–363.
  • Blomqvist, M., Rhost, S., Teneberg, S., Löfbom, L., Osterbye, T., Brigl, M., Månsson, J.E., Cardell, S.L. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur. J. Immunol. 2009, 39, 1726–1735.
  • Miyamoto, K., Miyake, S., Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T-cells. Nature 2001, 413, 531–534.
  • Pal E., Tabira T., Kawano T., Taniguchi M., Miyake S., Yamamura T. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Valpha14 NK T-cells. J. Immunol. 2001, 166, 662–668.
  • Jahng A.W., Maricic I., Pedersen B., Burdin N., Naidenko O., Kronenberg M., Koezuka Y., Kumar V. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 2001, 194, 1789-–1799.
  • Singh, A.K., Wilson, M.T., Hong, S., Olivares-Villagómez, D., Du, C., Stanic, A.K., Joyce, S., Sriram, S., Koezuka, Y., Van Kaer, L. Natural killer T-cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 2001, 194, 1801–1811.
  • Bezbradica, J.S., Stanic, A.K., Matsuki, N., Bour-Jordan, H., Bluestone, J.A., Thomas, J.W., Unutmaz, D., Van Kaer, L., Joyce, S. Distinct roles of dendritic cells and B-cells in Va14Ja18 natural T-cell activation in vivo. J. Immunol. 2005, 174, 4696–4705.
  • Im, J.S., Tapinos, N., Chae, G.T., Illarionov, P.A., Besra, G.S., DeVries, G.H., Modlin, R.L., Sieling, P.A., Rambukkana, A., Porcelli, S.A. Expression of CD1d molecules by human schwann cells and potential interactions with immunoregulatory invariant NK T-cells. J. Immunol. 2006, 177, 5226–5235.
  • Berkers, C.R., Ovaa, H. Immunotherapeutic potential for ceramide-based activators of iNKT cells. Trends Pharmacol. Sci. 2005, 26, 252–257.
  • Schmieg, J., Yang, G., Franck, R.W., Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T-cell ligand alpha-Galactosylceramide. J. Exp. Med. 2003, 198, 1631–1641.
  • Im, J.S., Arora, P., Bricard, G., Molano, A., Venkataswamy, M.M., Baine, I., Jerud, E.S., Goldberg, M.F., Baena, A., Yu, K.O., Ndonye, R.M., Howell, A.R., Yuan, W., Cresswell, P., Chang, Y.T., Illarionov, P.A., Besra, G.S., Porcelli, S.A. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T-cell activation. Immunity 2009, 30, 888–898.
  • Monteiro, M., Almeida, C.F., Caridade, M., Ribot, J.C., Duarte, J., Agua-Doce, A., Wollenberg, I., Silva-Santos, B., Graca, L. Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. J. Immunol. 2010, 185, 2157–2163.
  • Gombert, J.M., Herbelin, A., Tancrède-Bohin, E., Dy, M., Carnaud, C., Bach, J.F. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol. 1996, 26, 2989–2998.
  • Ouyang, Q., Chen, K., Wang, X., Zhang, C.M., Guo, J., Wei, Y.Y., Sun, Y.J., Xu, Z.W., Yang, K. [The study of changes on NKT cells of experimental autoimmune encephalomyelitis (EAE) mice]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2009, 25, 894–896.
  • Fritz R.B., Zhao M.L. Regulation of experimental autoimmune encephalomyelitis in the C57BL/6J mouse by NK1.1+, DX5+, alphabeta+ T-cells. J. Immunol. 2001, 166, 4209–4215.
  • Mars, L.T., Gautron, A.S., Novak, J., Beaudoin, L., Diana, J., Liblau, R.S., Lehuen, A. Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. J. Immunol. 2008, 181, 2321–2329.
  • Cipriani, B., Chen, L., Hiromatsu, K., Knowles, H., Raine, C.S., Battistini, L., Porcelli, S.A., Brosnan, C.F. Upregulation of group 1 CD1 antigen presenting molecules in guinea pigs with experimental autoimmune encephalomyelitis: an immunohistochemical study. Brain Pathol. 2003, 13, 1–9.
  • Hur, E.M., Youssef, S., Haws, M.E., Zhang, S.Y., Sobel, R.A., Steinman, L. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T-cells. Nat. Immunol. 2007, 8, 74–83.
  • Araki, M., Kondo, T., Gumperz, J.E., Brenner, M.B., Miyake, S., Yamamura, T. Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int. Immunol. 2003, 15, 279–288.
  • Illes Z., Kondo T., Newcombe J., Oka N., Tabira T., Yamamura T. Differential expression of NK T-cell alpha24JalphaQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol. 2000, 164, 4375–4381.
  • Gausling R., Trollmo C., Hafler D.A. Decreases in interleukin-4 secretion by invariant CD4-CD8-Valpha24JalphaQ T-cells in peripheral blood of patients with relapsing-remitting multiple sclerosis. Clin. Immunol. 2001, 98, 11–17.
  • van der Vliet, H.J., von Blomberg, B.M., Nishi, N., Reijm, M., Voskuyl, A.E., van Bodegraven, A.A., Polman, C.H., Rustemeyer, T., Lips, P., van den Eertwegh, A.J., Giaccone, G., Scheper, R.J., Pinedo, H.M. Circulating V(alpha24+) Vbeta11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 2001, 100, 144–148.
  • Roelofs-Haarhuis, K., Wu, X., Nowak, M., Fang, M., Artik, S., Gleichmann, E. Infectious nickel tolerance: a reciprocal interplay of tolerogenic APCs and T suppressor cells that is driven by immunization. J. Immunol. 2003, 171, 2863–2872.
  • Roelofs-Haarhuis, K., Wu, X., Gleichmann, E. Oral tolerance to nickel requires CD4+ invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T-cells. J. Immunol. 2004, 173, 1043–1050.
  • Becher, B., Durell, B.G., Noelle, R.J. IL-23 produced by CNS-resident cells controls T-cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest. 2003, 112, 1186–1191.
  • Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T., Zurawski, S., Wiekowski, M., Lira, S.A., Gorman, D., Kastelein, R.A., Sedgwick, J.D. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421, 744–748.
  • Mars, L.T., Araujo, L., Kerschen, P., Diem, S., Bourgeois, E., Van, L.P., Carrié, N., Dy, M., Liblau, R.S., Herbelin, A. Invariant NKT cells inhibit development of the Th17 lineage. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 6238–6243.
  • Yokote, H., Miyake, S., Croxford, J.L., Oki, S., Mizusawa, H., Yamamura, T. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am. J. Pathol. 2008, 173, 1714–1723.
  • Sakuishi, K., Miyake, S., Yamamura, T. Role of NK cells and invariant nkt cells in multiple sclerosis. Results Probl. Cell Differ. 2009. [Epub ahead of print]
  • Battaglia, M., Stabilini, A., Roncarolo, M.G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T-cells. Blood 2005, 105, 4743–4748.
  • Hoffmann, P., Eder, R., Kunz-Schughart, L.A., Andreesen, R., Edinger, M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T-cells. Blood 2004, 104, 895–903.
  • Keever-Taylor, C.A., Browning, M.B., Johnson, B.D., Truitt, R.L., Bredeson, C.N., Behn, B., Tsao, A. Rapamycin enriches for CD4(+) CD25(+) CD27(+) Foxp3(+) regulatory T-cells in ex vivo-expanded CD25-enriched products from healthy donors and patients with multiple sclerosis. Cytotherapy 2007, 9, 144–157.
  • Aandahl, E.M., Torgersen, K.M., Taskén, K. CD8+ regulatory T-cells-A distinct T-cell lineage or a transient T-cell phenotype? Hum. Immunol. 2008, 69, 696–699.
  • Jung, S., Park, Y.K., Shin, J.H., Lee, H., Kim, S.Y., Lee, G.R., Park, S.H. The requirement of NKT cells in tolerogenic APCs-mediated suppression of collagen-induced arthritis. Exp. Mol. Med. (In Press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.