232
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Prolyl hydroxylase and hypoxia inducible factor: potential targets for cancer therapy

&
Pages 568-575 | Received 08 Nov 2010, Accepted 02 Dec 2010, Published online: 12 Jan 2011

References

  • Bornstein, P. The biosynthesis of collagen. Annu. Rev. Biochem. 1974, 43, 567–603.
  • Grant, M.E., Prockop, D.J. The biosynthesis of collagen. 1. N. Engl. J. Med. 1972, 286, 194–199.
  • Grant, M.E., Prockop, D.J. The biosynthesis of collagen. 2. N. Engl. J. Med. 1972, 286, 242–249.
  • Takeuchi, T., Kivirikko, K.I., Prockop, D.J. Increased protocollagen hydroxylase activity in the livers of rats with hepatic fibrosis. Biochem. Biophys. Res. Commun. 1967, 28, 940–944.
  • Stein, H.D., Keiser, H.R., Sjoerdsma, A. Proline-hydroxylase activity in human blood. Lancet 1970, 1, 106–109.
  • Keiser, H.R., Vogel, C.L., Sadikali, F. Protocollagen proline hydroxylase in sera of Ugandans with hepatocellular carcinoma. J. Natl. Cancer Inst. 1972, 49, 1251–1255.
  • Tug, S., Delos Reyes, B., Fandrey, J., Berchner-Pfannschmidt, U. Non-hypoxic activation of the negative regulatory feedback loop of prolyl-hydroxylase oxygen sensors. Biochem. Biophys. Res. Commun. 2009, 384, 519–523.
  • Couvelard, A., Deschamps, L., Rebours, V., Sauvanet, A., Gatter, K., Pezzella, F., Ruszniewski, P., Bedossa, P. Overexpression of the oxygen sensors PHD-1, PHD-2, PHD-3, and FIH Is associated with tumor aggressiveness in pancreatic endocrine tumors. Clin. Cancer Res. 2008, 14, 6634–6639.
  • McGee, J.O., O Hare, R.P., Patrick, R.S. Stimulation of the collagen biosynthetic pathway by factors isolated from experimentally-injured liver. Nat. New Biol. 1973, 243, 121–123.
  • Chan, D.A., Kawahara, T.L., Sutphin, P.D., Chang, H.Y., Chi, J.T., Giaccia, A.J. Tumor vasculature is regulated by PHD-2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 2009, 15, 527–538.
  • Myllyharju, J. HIF prolyl 4-hydroxylases and their potential as drug targets. Curr. Pharm. Des. 2009, 15, 3878–3885.
  • Maynard, M.A., Qi, H., Chung, J., Lee, E. H., Kondo, Y., Hara S., Conaway, R.C., Conaway, J.W., Ohh, M. Multiple splice variants of the human HIF-3alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J. Biol. Chem 2003, 278, 11032–11040.
  • Schofield, C.J., Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 2004, 5, 343–354.
  • Rankin, E.B., Rha, J., Selak, M.A., Unger, T.L., Keith, B., Liu, Q., Haase, V.H. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol. Cell. Biol. 2009, 29, 4527–4538.
  • Berra, E., Benizri, E., Ginouvès, A., Volmat, V., Roux, D., Pouysségur, J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003, 22, 4082–4090.
  • Appelhoff, R.J., Tian, Y.M., Raval, R.R., Turley, H., Harris, A.L., Pugh, C.W., Ratcliffe, P.J., Gleadle, J.M. Differential function of the prolyl hydroxylases PHD-1, PHD-2, and PHD-3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 2004, 279, 38458–38465.
  • Semenza, G.L., Jiang, B.H., Leung, S.W., Passantino, R., Concordet, J.P., Maire, P., Giallongo, A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 1996, 271, 32529–32537.
  • Boulahbel, H., Durán, R.V., Gottlieb, E. Prolyl hydroxylases as regulators of cell metabolism. Biochem. Soc. Trans. 2009, 37, 291–294.
  • Mazzone, M., Dettori, D., Leite de Oliveira, R., Loges, S., Schmidt, T., Jonckx, B., Tian, Y.M., Lanahan, A.A., Pollard, P., Ruiz de Almodovar, C., De Smet, F., Vinckier, S., Aragonés, J., Debackere, K., Luttun, A., Wyns, S., Jordan, B., Pisacane, A., Gallez, B., Lampugnani, M.G., Dejana, E., Simons, M., Ratcliffe, P., Maxwell, P., Carmeliet, P. Heterozygous deficiency of PHD-2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009, 136, 839–851.
  • Rankin, E.B., Giaccia, A.J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008, 15, 678–685.
  • Lee, K.A., Lynd, J.D., O’Reilly, S., Kiupel, M., McCormick, J.J., LaPres, J.J. The biphasic role of the hypoxia-inducible factor prolyl-4-hydroxylase, PHD-2, in modulating tumor-forming potential. Mol. Cancer Res. 2008, 6, 829–842.
  • Cioffi, C.L., Liu, X.Q., Kosinski, P.A., Garay, M., Bowen, B.R. Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells. Biochem. Biophys. Res. Commun. 2003, 303, 947–953.
  • Ozer, A., Bruick, R.K. Regulation of HIF by prolyl hydroxylases: recruitment of the candidate tumor suppressor protein ING-4. Cell Cycle 2005, 4, 1153–1156.
  • Semenza, G.L. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov. Today 2007, 12, 853–859.
  • Zhong, H., De Marzo, A.M., Laughner, E., Lim, M., Hilton, D.A., Zagzag, D., Buechler, P., Isaacs, W.B., Semenza, G.L., Simons, J.W. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999, 59, 5830–5835.
  • Ziello, J.E., Jovin, I.S., Huang, Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 2007, 80, 51–60.
  • Höckel, M., Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001, 93, 266–276.
  • Vaupel, P., Kelleher, D.K., Höckel, M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin. Oncol. 2001, 28, 29–35.
  • Vaupel, P. The role of hypoxia-induced factors in tumor progression. Oncologist 2004, 9 Suppl 5, 10–17.
  • Moulder, J.E., Rockwell, S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev. 1987, 5, 313–341.
  • Durand, R.E. Keynote address: the influence of microenvironmental factors on the activity of radiation and drugs. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 253–258.
  • Giaccia, A.J. Hypoxic stress proteins: survival of the fittest. Semin. Radiat. Oncol. 1996, 6, 46–58.
  • Riva, C., Chauvin, C., Pison, C., Leverve, X. Cellular physiology and molecular events in hypoxia-induced apoptosis. Anticancer Res. 1998, 18, 4729–4736.
  • Haroon, Z.A., Raleigh, J.A., Greenberg, C.S., Dewhirst, M.W. Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann. Surg. 2000, 231, 137–147.
  • Vaupel, P., Harrison, L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 2004, 9 Suppl 5, 4–9.
  • Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., Ferreira, G., Iyer, N., LaRusch, J., Pak, B., Taghavi, P., Semenza, G.L. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 2003, 63, 1138–1143.
  • Koong, A.C., Denko, N.C., Hudson, K.M., Schindler, C., Swiersz, L., Koch, C., Evans, S., Ibrahim, H., Le, Q.T., Terris, D.J., Giaccia, A.J. Candidate genes for the hypoxic tumor phenotype. Cancer Res. 2000, 60, 883–887.
  • Czekay, R.P., Aertgeerts, K., Curriden, S.A., Loskutoff, D.J. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J. Cell Biol. 2003, 160, 781–791.
  • Harris, A.L. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47.
  • Brown, J.M., Giaccia, A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58, 1408–1416.
  • Prabhakar, N.R. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J. Appl. Physiol. 2001, 90, 1986–1994.
  • Shi, Y.H., Fang, W.G. Hypoxia-inducible factor-1 in tumour angiogenesis. World J. Gastroenterol. 2004, 10, 1082–1087.
  • Vaupel, P., Kallinowski, F., Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989, 49, 6449–6465.
  • Bos, R., Zhong, H., Hanrahan, C.F., Mommers, E.C., Semenza, G.L., Pinedo, H.M., Abeloff, M.D., Simons, J.W., van Diest, P.J., van der Wall, E. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J. Natl. Cancer Inst. 2001, 93, 309–314.
  • Giatromanolaki, A., Koukourakis, M.I., Sivridis, E., Turley, H., Talks, K., Pezzella, F., Gatter, K.C., Harris, A.L. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br. J. Cancer 2001, 85, 881–890.
  • Berra, E., Ginouvès, A., Pouysségur, J. The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep. 2006, 7, 41–45.
  • Hirsilä, M., Koivunen, P., Günzler, V., Kivirikko, K.I., Myllyharju, J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem. 2003, 278, 30772–30780.
  • Michaela, G., Celeste, S.M. Hypoxia inducible factor, hypoxia and tumour angiogenesis. Curr. Opin. Hematol. 2006, 13, 169–174.
  • Maxwell, P.H., Ratcliffe, P.J. Oxygen sensors and angiogenesis. Semin. Cell Dev. Biol. 2002, 13, 29–37.
  • Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K.I., Dang, C.V., Semenza, G.L. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of c-Myc activity. Cancer Cell 2007, 11, 407–420.
  • Déry, M.A., Michaud, M.D., Richard, D.E. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 2005, 37, 535–540.
  • Vincent, K.A., Shyu, K.G., Luo, Y., Magner, M., Tio, R.A., Jiang, C., Goldberg, M.A., Akita, G.Y., Gregory, R.J., Isner, J.M. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation 2000, 102, 2255–2261.
  • Trentin, D., Hall, H., Wechsler, S., Hubbell, J.A. Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis. Proc. Natl. Acad. Sci. USA. 2006, 103, 2506–2511.
  • Toi, M., Hoshina, S., Takayanagi, T., Tominaga, T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn. J. Cancer Res. 1994, 85, 1045–1049.
  • Maeda, K., Chung, Y.S., Ogawa, Y., Takatsuka, S., Kang, S.M., Ogawa, M., Sawada, T., Sowa, M. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 1996, 77, 858–863.
  • Bochner, B.H., Cote, R.J., Weidner, N., Groshen, S., Chen, S.C., Skinner, D.G., Nichols, P.W. Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis. J. Natl. Cancer Inst. 1995, 87, 1603–1612.
  • Jaeger, T.M., Weidner, N., Chew, K., Moore, D.H., Kerschmann, R.L., Waldman, F.M., Carroll, P.R. Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer. J. Urol. 1995, 154, 69–71.
  • Zhang, W., Tsuchiya, T., Yasukochi, Y. Transitional change in interaction between HIF-1 and HNF-4 in response to hypoxia. J. Hum. Genet. 1999, 44, 293–299.
  • Bos, R., Van Diest, P.J., van, der, Groep, P., Shvarts, A., Greijer, A.E., van der Wall, E. Expression of hypoxia-inducible factor-1alpha and cell cycle proteins in invasive breast cancer are estrogen receptor related. Breast. Cancer. Res. 2004, 6, 450–459.
  • Laughner, E., Taghavi, P., Chiles, K., Mahon, P.C., Semenza, G.L. Her2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 2001, 21, 3995–4004.
  • Yen, L., Benlimame, N., Nie, Z.R., Xiao, D., Wang, T., Al Moustafa, A.E., Esumi, H., Milanini, J., Hynes, N.E., Pages, G., Alaoui-Jamali, M.A. Differential regulation of tumor angiogenesis by distinct ErbB homo-and heterodimers. Mol. Biol. Cell 2002, 13, 4029–4044.
  • Dales, J.P., Garcia, S., Meunier-Carpentier, S., Andrac-Meyer, L., Haddad, O., Lavaut, M.N., Allasia, C., Bonnier, P., Charpin, C. Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int. J. Cancer 2005, 116, 734–739.
  • Petit, A.M., Rak, J., Hung, M.C., Rockwell, P., Goldstein, N., Fendly, B., Kerbel, R.S. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol. 1997, 151, 1523–1530.
  • Gruber, G., Greiner, R.H., Hlushchuk, R., Aebersold, D.M., Altermatt, H.J., Berclaz, G., Djonov, V. Hypoxia-inducible factor 1 alpha in high-risk breast cancer: an independent prognostic parameter? Breast. Cancer. Res. 2004, 6, 191–198.
  • Zhong, H., Semenza, G.L., Simons, J.W., De Marzo, A.M. Up-regulation of hypoxia-inducible factor 1alpha is an early event in prostate carcinogenesis. Cancer Detect. Prev. 2004, 28, 88–93.
  • Kimbro, K.S., Simons, J.W. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr. Relat. Cancer 2006, 13, 739–749.
  • Du, Z., Fujiyama, C., Chen, Y., Masaki, Z. Expression of hypoxia-inducible factor 1alpha in human normal, benign, and malignant prostate tissue. Chin. Med. J. 2003, 116, 1936–1939.
  • Mabjeesh, N.J., Willard, M.T., Frederickson, C.E., Zhong, H., Simons, J.W. Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3′-kinase/protein kinase B in prostate cancer cells. Clin. Cancer Res. 2003, 9, 2416–2425.
  • Sheflin, L.G., Zou, A.P., Spaulding, S.W. Androgens regulate the binding of endogenous HuR to the AU-rich 3′ UTRs of HIF-1alpha and EGF mRNA. Biochem. Biophys. Res. Commun. 2004, 322, 644–651.
  • Koong, A.C., Chen, E.Y., Giaccia, A.J. Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res. 1994, 54, 1425–1430.
  • Talks, K.L., Turley, H., Gatter, K.C., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J., Harris, A.L. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 2000, 157, 411–421.
  • Leek, R.D., Talks, K.L., Pezzella, F., Turley, H., Campo, L., Brown, N.S., Bicknell, R., Taylor, M., Gatter, K.C., Harris, A.L. Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Res. 2002, 62, 1326–1329.
  • Giatromanolaki, A., Sivridis, E., Fiska, A., Koukourakis, M.I. Hypoxia-inducible factor-2 alpha (HIF-2 alpha) induces angiogenesis in breast carcinomas. Appl. Immunohistochem. Mol. Morphol. 2006, 14, 78–82.
  • Onita, T., Ji, P.G., Xuan, J.W., Sakai, H., Kanetake, H., Maxwell, P.H., Fong, G.H., Gabril, M.Y., Moussa, M., Chin, J.L. Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin. Cancer Res. 2002, 8, 471–480.
  • Ji, P., Xuan, J.W., Onita, T., Sakai, H., Kanetake, H., Gabril, M.Y., Sun, Y., Moussa, M., Chin, J.L. Correlation study showing no concordance between EPAS-1/HIF-2alpha mRNA and protein expression in transitional cellcancer of the bladder. Urology 2003, 61, 851–857.
  • Yoshimura, H., Dhar, D.K., Kohno, H., Kubota, H., Fujii, T., Ueda, S., Kinugasa, S., Tachibana, M., Nagasue, N. Prognostic impact of hypoxia-inducible factors 1alpha and 2alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin. Cancer Res. 2004, 10, 8554–8560.
  • Koukourakis, M.I., Bentzen, S.M., Giatromanolaki, A., Wilson, G.D., Daley, F.M., Saunders, M.I., Dische, S., Sivridis, E., Harris, A.L. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J. Clin. Oncol. 2006, 24, 727–735.
  • Kondo, K., Klco, J., Nakamura, E., Lechpammer, M., Kaelin, W.G.Jr, . Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002, 1, 237–246.
  • Knowles H, Leek R, Harris AL. Macrophage infiltration and angiogenesis in human malignancy. Novartis. Found. Symp. 2004, 256, 189–200; discussion 200–204, 259–269.
  • Kondo, K., Kim, W.Y., Lechpammer, M., Kaelin, W.G.Jr, . Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 2003, 1, E83.
  • Jiang, B.H., Rue, E., Wang, G.L., Roe, R., Semenza, G.L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 1996, 271, 17771–17778.
  • Dioum, E.M., Chen, R., Alexander, M.S., Zhang, Q., Hogg, R.T., Gerard, R.D., Garcia, J.A. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 2009, 324, 1289–1293.
  • Kaelin, W.G.Jr, . Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2002, 2, 673–682.
  • Covello, K.L., Simon, M.C., Keith, B. Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res. 2005, 65, 2277–2286.
  • Holmquist-Mengelbier, L., Fredlund, E., Löfstedt, T., Noguera, R., Navarro, S., Nilsson, H., Pietras, A., Vallon-Christersson, J., Borg, A., Gradin, K., Poellinger, L., Påhlman, S. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 2006, 10, 413–423.
  • Covello, K.L., Kehler, J., Yu, H., Gordan, J.D., Arsham, A.M., Hu, C.J., Labosky, P.A., Simon, M.C., Keith, B. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006, 20, 557–570.
  • Hoehner, J.C., Gestblom, C., Hedborg, F., Sandstedt, B., Olsen, L., Påhlman, S. A developmental model of neuroblastoma: differentiating stroma-poor tumors’ progress along an extra-adrenal chromaffin lineage. Lab. Invest. 1996, 75, 659–675.
  • Le Douarin, N., Smith, J. Development of the peripheral nervous system from the neural crest. Annu. Rev. Cell. Biol. 1998, 4, 375–404.
  • Ghafar, M.A., Anastasiadis, A.G., Chen, M.W., Burchardt, M., Olsson, L.E., Xie, H., Benson, M.C., Buttyan, R. Acute hypoxia increases the aggressive characteristics and survival properties of prostate cancer cells. Prostate 2003, 54, 58–67.
  • Löfstedt, T., Fredlund, E., Holmquist-Mengelbier, L., Pietras, A., Ovenberger, M., Poellinger, L., Påhlman, S. Hypoxia inducible factor-2alpha in cancer. Cell Cycle 2007, 6, 919–926.
  • Erez, N., Milyavsky, M., Eilam, R., Shats, I., Goldfinger, N., Rotter, V. Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Res. 2003, 63, 8777–8783.
  • Fox, S.B., Bragança, J., Turley, H., Campo, L., Han, C., Gatter, K.C., Bhattacharya, S., Harris, A.L. CITED4 inhibits hypoxia-activated transcription in cancer cells, and its cytoplasmic location in breast cancer is associated with elevated expression of tumor cell hypoxia-inducible factor 1alpha. Cancer Res. 2004, 64, 6075–6081.
  • Knowles, H.J., Raval, R.R., Harris, A.L., Ratcliffe, P.J. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 2003, 63, 1764–1768.
  • Lee, K., Qian, D.Z., Rey, S., Wei, H., Liu, J.O., Semenza, G.L. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc. Natl. Acad. Sci. USA. 2009, 106, 2353–2358.
  • Hewitson, K.S., Schofield, C.J. The HIF pathway as a therapeutic target. Drug Discov. Today 2004, 9, 704–711.
  • Jones, M.K., Szabó, I.L., Kawanaka, H., Husain, S.S., Tarnawski, A.S. von Hippel-Lindau tumor suppressor and HIF-1alpha: new targets of NSAIDs inhibition of hypoxia-induced angiogenesis. FASEB J. 2002, 16, 264–266.
  • Gordan, J.D., Lal, P., Dondeti, V.R., Letrero, R., Parekh, K.N., Oquendo, C.E., Greenberg, R.A., Flaherty, K.T., Rathmell, W.K., Keith, B., Simon, M.C., Nathanson, K.L. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-clear cell renal carcinoma. Cancer Cell 2008, 14, 435–446.
  • Wiedmann, M.W., Caca, K. Molecularly targeted therapy for gastrointestinal cancer. Curr. Cancer Drug Targets 2005, 5, 171–193.
  • Tan, C., de Noronha, R.G., Roecker, A.J., Pyrzynska, B., Khwaja, F., Zhang, Z., Zhang, H., Teng, Q., Nicholson, A.C., Giannakakou, P., Zhou, W., Olson, J.J., Pereira, M.M., Nicolaou, K.C., Van Meir, E.G. Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res. 2005, 65, 605–612.
  • Luwor, R.B., Lu, Y., Li, X., Mendelsohn, J., Fan, Z. The antiepidermal growth factor receptor monoclonal antibody cetuximab/C225 reduces hypoxia-inducible factor-1 alpha, leading to transcriptional inhibition of vascular endothelial growth factor expression. Oncogene 2005, 24, 4433–4441.
  • Mabjeesh, N.J., Escuin, D., LaVallee, T.M., Pribluda, V.S., Swartz, G.M., Johnson, M.S., Willard, M.T., Zhong, H., Simons, J.W., Giannakakou, P. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003, 3, 363–375.
  • Burkitt, K., Chun, S.Y., Dang, D.T., Dang, L.H. Targeting both HIF-1 and HIF-2 in human colon cancer cells improves tumor response to sunitinib treatment. Mol. Cancer. Ther. 2009, 8, 1148–1156.
  • Nilsson, M.B., Zage, P.E., Zeng, L., Xu, L., Cascone, T., Wu, H.K., Saigal, B., Zweidler-McKay, P.A., Heymach, J.V. Multiple receptor tyrosine kinases regulate HIF-1alpha and HIF-2alpha in normoxia and hypoxia in neuroblastoma: implications for anti-angiogenic mechanisms of multikinase inhibitors. Oncogene 2010, 29, 2938–2949.
  • Prabhu, V., Guruvayoorappan, C. Nitric oxide: pros and cons in tumor progression. Immunopharmacol. Immunotoxicol. 2010, 32, 387–392.
  • Fang, J., Zhou, Q., Liu, L.Z., Xia, C., Hu, X., Shi, X., Jiang, B.H. Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis 2007, 4, 58–64.
  • Choi, H., Chun, Y.S., Kim, S.W., Kim, M.S., Park, J.W. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol. Pharmacol. 2006, 70, 1664–1671.
  • Nagle, D.G., Zhou, Y.D. Marine natural products as inhibitors of hypoxic signaling in tumors. Phytochem. Rev. 2009, 8, 415–429.
  • Jin, W., Cai, X.F., Na, M., Lee, J.J., Bae, K. Triterpenoids and diarylheptanoids from Alnus hirsuta inhibit HIF-1 in AGS cells. Arch. Pharm. Res. 2007, 30, 412–418.
  • Liu, Y., Morgan, J.B., Coothankandaswamy, V., Liu, R., Jekabsons, M.B., Mahdi, F., Nagle, D.G., Zhou, Y.D. The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J. Nat. Prod. 2009, 72, 2104–2109.
  • Schofield, C.J., Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 2004, 5, 343–354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.