181
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Mitoxantrone exerts both cytotoxic and immunoregulatory effects on activated microglial cells

, , , , &
Pages 36-41 | Received 06 Jan 2011, Accepted 15 Mar 2011, Published online: 26 Apr 2011

References

  • Steinman, L. Multiple sclerosis: a two-stage disease. Nat Immunol 2001, 2, 762–764.
  • Neuhaus, O., Kieseier, B.C., Hartung, H.P. Mechanisms of mitoxantrone in multiple sclerosis—what is known? J Neurol Sci 2004, 223, 25–27.
  • Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T., Zurawski, S., Wiekowski, M., Lira, S.A., Gorman, D., Kastelein, R.A., Sedgwick, J.D. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421, 744–748.
  • Langrish, C.L., Chen, Y., Blumenschein, W.M., Mattson, J., Basham, B., Sedgwick, J.D., McClanahan, T., Kastelein, R.A., Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005, 201, 233–240.
  • Fitzgerald, D.C., Zhang, G.X., El-Behi, M., Fonseca-Kelly, Z., Li, H., Yu, S., Saris, C.J., Gran, B., Ciric, B., Rostami, A. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 2007, 8, 1372–1379.
  • Chen, Y., Inobe, J., Kuchroo, V.K., Baron, J.L., Janeway, C.A. Jr. Weiner, H.L. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci USA 1996, 93, 388–391.
  • Bettelli, E., Das, M.P., Howard, E.D., Weiner, H.L., Sobel, R.A., Kuchroo, V.K. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J Immunol 1998, 161, 3299–3306.
  • Zhao, Z., Yu, S., Fitzgerald, D.C., Elbehi, M., Ciric, B., Rostami, A.M., Zhang, G.X. IL-12R beta 2 promotes the development of CD4+CD25+ regulatory T cells. J Immunol 2008, 181, 3870–3876.
  • Smith, I.E. Mitoxantrone (novantrone): a review of experimental and early clinical studies. Cancer Treat Rev 1983, 10, 103–115.
  • Vollmer, T., Stewart, T., Baxter, N. Mitoxantrone and cytotoxic drugs’ mechanisms of action. Neurology 2010, 74 (Suppl 1), S41–S46.
  • Jain, K.K. Evaluation of mitoxantrone for the treatment of multiple sclerosis. Expert Opin Investig Drugs 2000, 9, 1139–1149.
  • Neuhaus, O., Kieseier, B.C., Hartung, H.P. Therapeutic role of mitoxantrone in multiple sclerosis. Pharmacol Ther 2006, 109, 198–209.
  • Neuhaus, O., Wiendl, H., Kieseier, B.C., Archelos, J.J., Hemmer, B., Stüve, O., Hartung, H.P. Multiple sclerosis: mitoxantrone promotes differential effects on immunocompetent cells in vitro. J Neuroimmunol 2005, 168, 128–137.
  • Gbadamosi, J., Buhmann, C., Tessmer, W., Moench, A., Haag, F., Heesen, C. Effects of mitoxantrone on multiple sclerosis patients’ lymphocyte subpopulations and production of immunoglobulin, TNF-alpha and IL-10. Eur Neurol 2003, 49, 137–141.
  • Chan, A., Weilbach, F.X., Toyka, K.V., Gold, R. Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients. Clin Exp Immunol 2005, 139, 152–158.
  • Kopadze, T., Dehmel, T., Hartung, H.P., Stüve, O., Kieseier, B.C. Inhibition by mitoxantrone of in vitro migration of immunocompetent cells: a possible mechanism for therapeutic efficacy in the treatment of multiple sclerosis. Arch Neurol 2006, 63, 1572–1578.
  • Fidler, J.M., DeJoy, S.Q., Gibbons, J.J. Jr. Selective immunomodulation by the antineoplastic agent mitoxantrone. I. Suppression of B lymphocyte function. J Immunol 1986, 137, 727–732.
  • Pelfrey, C.M., Cotleur, A.C., Zamor, N., Lee, J.C., Fox, R.J. Immunological studies of mitoxantrone in primary progressive MS. J Neuroimmunol 2006, 175, 192–199.
  • Carson, M.J. Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 2002, 40, 218–231.
  • Brahmachari, S., Jana, A., Pahan, K. Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. J Immunol 2009, 183, 5917–5927.
  • Kuhlmann, T., Wendling, U., Nolte, C., Zipp, F., Maruschak, B., Stadelmann, C., Siebert, H., Brück, W. Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and activation by intravenous immunoglobulins. J Neurosci Res 2002, 67, 185–190.
  • Nagai, A., Nakagawa, E., Hatori, K., Choi, H.B., McLarnon, J.G., Lee, M.A., Kim, S.U. Generation and characterization of immortalized human microglial cell lines: expression of cytokines and chemokines. Neurobiol Dis 2001, 8, 1057–1068.
  • Veroni, C., Gabriele, L., Canini, I., Castiello, L., Coccia, E., Remoli, M.E., Columba-Cabezas, S., Aricò, E., Aloisi, F., Agresti, C. Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Mol Cell Neurosci 2010, 45, 234–244.
  • Lu, K., Savaraj, N., Loo, T.L. Pharmacological disposition of 1,4-dihydroxy-5-8-bis[[2 [(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione dihydrochloride in the dog. Cancer Chemother Pharmacol 1984, 13, 63–66.
  • Baker, D., O’Neill, J.K., Davison, A.N., Turk, J.L. Control of immune-mediated disease of the central nervous system requires the use of a neuroactive agent: elucidation by the action of mitoxantrone. Clin Exp Immunol 1992, 90, 124–128.
  • Piao, W.H., Wong, R., Bai, X.F., Huang, J., Campagnolo, D.I., Dorr, R.T., Vollmer, T.L., Shi, F.D. Therapeutic effect of anthracene-based anticancer agent ethonafide in an animal model of multiple sclerosis. J Immunol 2007, 179, 7415–7423.
  • Hou, R.C., Chen, H.L., Tzen, J.T., Jeng, K.C. Effect of sesame antioxidants on LPS-induced NO production by BV2 microglial cells. Neuroreport 2003, 14, 1815–1819.
  • Kim, W.K., Jang, P.G., Woo, M.S., Han, I.O., Piao, H.Z., Lee, K., Lee, H., Joh, T.H., Kim, H.S. A new anti-inflammatory agent KL-1037 represses proinflammatory cytokine and inducible nitric oxide synthase (iNOS) gene expression in activated microglia. Neuropharmacology 2004, 47, 243–252.
  • Vermes, I., Haanen, C., Steffens-Nakken, H., Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995, 184, 39–51.
  • Rieckmann, P., Toyka, K.V., Bassetti, C., Beer, K., Beer, S., Buettner, U., Chofflon, M., Götschi-Fuchs, M., Hess, K., Kappos, L., Kesselring, J., Goebels, N., Ludin, H.P., Mattle, H., Schluep, M., Vaney, C., Baumhackl, U., Berger, T., Deisenhammer, F., Fazekas, F., Freimüller, M., Kollegger, H., Kristoferitsch, W., Lassmann, H., Markut, H., Strasser-Fuchs, S., Vass, K., Altenkirch, H., Bamborschke, S., Baum, K., Benecke, R., Brück, W., Dommasch, D., Elias, W.G., Gass, A., Gehlen, W., Haas, J., Haferkamp, G., Hanefeld, F., Hartung, H.P., Heesen, C., Heidenreich, F., Heitmann, R., Hemmer, B., Hense, T., Hohlfeld, R., Janzen, R.W., Japp, G., Jung, S., Jügelt, E., Koehler, J., Kölmel, W., König, N., Lowitzsch, K., Manegold, U., Melms, A., Mertin, J., Oschmann, P., Petereit, H.F., Pette, M., Pöhlau, D., Pohl, D., Poser, S., Sailer, M., Schmidt, S., Schock, G., Schulz, M., Schwarz, S., Seidel, D., Sommer, N., Stangel, M., Stark, E., Steinbrecher, A., Tumani, H., Voltz, R., Weber, F., Weinrich, W., Weissert, R., Wiendl, H., Wiethölter, H., Wildemann, U., Zettl, U.K., Zipp, F., Zschenderlein, R., Izquierdo, G., Kirjazovas, A., Packauskas, L., Miller, D., Koncan Vracko, B., Millers, A., Orologas, A., Panellus, M., Sindic, C.J., Bratic, M., Svraka, A., Vella, N.R., Stelmasiak, Z., Selmaj, K., Bartosik-Psujik, H., Mitosek-Szewczyk, K., Belniak, E., Mochecka, A., Bayas, A., Chan, A., Flachenecker, P., Gold, R., Kallmann, B., Leussink, V., Mäurer, M., Ruprecht, K., Stoll, G., Weilbach, F.X.; Multiple Sclerosis Therapy Consensus Group. Escalating immunotherapy of multiple sclerosis—new aspects and practical application. J Neurol 2004, 251, 1329–1339.
  • Hartung, H.P., Gonsette, R., König, N., Kwiecinski, H., Guseo, A., Morrissey, S.P., Krapf, H., Zwingers, T.; Mitoxantrone in Multiple Sclerosis Study Group (MIMS). Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 2002, 360, 2018–2025.
  • Kim, H.J., Ifergan, I., Antel, J.P., Seguin, R., Duddy, M., Lapierre, Y., Jalili, F., Bar-Or, A. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 2004, 172, 7144–7153.
  • Zhu, J., Paul, W.E. Heterogeneity and plasticity of T helper cells. Cell Res 2010, 20, 4–12.
  • Krakauer, M., Sorensen, P., Khademi, M., Olsson, T., Sellebjerg, F. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression. Mult Scler 2008, 14, 622–630.
  • Li, Y., Chu, N., Hu, A., Gran, B., Rostami, A., Zhang, G.X. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 2007, 130, 490–501.
  • Li, J., Gran, B., Zhang, G.X., Ventura, E.S., Siglienti, I., Rostami, A., Kamoun, M. Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. J Neurol Sci 2003, 215, 95–103.
  • Mekala, D.J., Alli, R.S., Geiger, T.L. IL-10-dependent infectious tolerance after the treatment of experimental allergic encephalomyelitis with redirected CD4+CD25+ T lymphocytes. Proc Natl Acad Sci USA 2005, 102, 11817–11822.
  • O’Neill, E.J., Day, M.J., Wraith, D.C. IL-10 is essential for disease protection following intranasal peptide administration in the C57BL/6 model of EAE. J Neuroimmunol 2006, 178, 1–8.
  • Stewart, D.J., Green, R.M., Mikhael, N.Z., Montpetit, V., Thibault, M., Maroun, J.A. Human autopsy tissue concentrations of mitoxantrone. Cancer Treat Rep 1986, 70, 1255–1261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.