336
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Pseudoephedrine inhibits T-cell activation by targeting NF-κB, NFAT and AP-1 signaling pathways

, , , , , & show all
Pages 98-106 | Received 09 Feb 2011, Accepted 14 Apr 2011, Published online: 02 Jun 2011

References

  • Crabtree, G.R., Clipstone, N.A. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu Rev Biochem 1994, 63, 1045–1083.
  • Karin, M., Ben-Neriah, Y. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu Rev Immunol 2000, 18, 621–663.
  • Vermeulen, L., De Wilde, G., Notebaert, S., Vanden Berghe, W., Haegeman, G. Regulation of the transcriptional activity of the nuclear factor-κB p65 subunit. Biochem Pharmacol 2002, 64, 963–970.
  • Hogan, P.G., Chen, L., Nardone, J., Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 2003, 17, 2205–2232.
  • Macián, F., López-Rodríguez, C., Rao, A. Partners in transcription: NFAT and AP-1. Oncogene 2001, 20, 2476–2489.
  • Hagemann, C., Blank, J.L. The ups and downs of MEK kinase interactions. Cell Signal 2001, 13, 863–875.
  • Kiani, A., Rao, A., Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 2000, 12, 359–372.
  • Tian, B., Brasier, A.R. Identification of a nuclear factor κB-dependent gene network. Recent Prog Horm Res 2003, 58, 95–130.
  • de Gregorio, R., Iñiguez, M.A., Fresno, M., Alemany, S. Cot kinase induces cyclooxygenase-2 expression in T cells through activation of the nuclear factor of activated T cells. J Biol Chem 2001, 276, 27003–27009.
  • Ho, I.C., Kim, J.I., Szabo, S.J., Glimcher, L.H. Tissue-specific regulation of cytokine gene expression. Cold Spring Harb Symp Quant Biol 1999, 64, 573–584.
  • Gaffen, S.L., Liu, K.D. Overview of interleukin-2 function, production and clinical applications. Cytokine 2004, 28, 109–123.
  • Williams, M.A., Tyznik, A.J., Bevan, M.J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006, 441, 890–893.
  • Hoyer, K.K., Dooms, H., Barron, L., Abbas, A.K. Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 2008, 226, 19–28.
  • Baud, V., Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001, 11, 372–377.
  • Wajant, H., Pfizenmaier, K., Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ 2003, 10, 45–65.
  • Yano, O., Kanellopoulos, J., Kieran, M., Le Bail, O., Israël, A., Kourilsky, P. Purification of KBF1, a common factor binding to both H-2 and beta 2-microglobulin enhancers. EMBO J 1987, 6, 3317–3324.
  • Durand, D.B., Shaw, J.P., Bush, M.R., Replogle, R.E., Belagaje, R., Crabtree, G.R. Characterization of antigen receptor response elements within the interleukin-2 enhancer. Mol Cell Biol 1988, 8, 1715–1724.
  • Luo, C., Burgeon, E., Rao, A. Mechanisms of transactivation by nuclear factor of activated T cells-1. J Exp Med 1996, 184, 141–147.
  • Schmitz, M.L., dos Santos Silva, M.A., Baeuerle, P.A. Transactivation domain 2 (TA2) of p65 NF-κB. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in intact cells. J Biol Chem 1995, 270, 15576–15584.
  • Sancho, R., Lucena, C., Macho, A., Calzado, M.A., Blanco-Molina, M., Minassi, A., Appendino, G., Muñoz, E. Immunosuppressive activity of capsaicinoids: Capsiate derived from sweet peppers inhibits NF-κB activation and is a potent antiinflammatory compound in vivo. Eur J Immunol 2002, 32, 1753–1763.
  • Spriggs, D.R., Deutsch, S., Kufe, D.W. Genomic structure, induction, and production of TNF-alpha. Immunol Ser 1992, 56, 3–34.
  • Truneh, A., Albert, F., Golstein, P., Schmitt-Verhulst, A.M. Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 1985, 313, 318–320.
  • Ma, G., Bavadekar, S.A., Davis, Y.M., Lalchandani, S.G., Nagmani, R., Schaneberg, B.T., Khan, I.A., Feller, D.R. Pharmacological effects of ephedrine alkaloids on human alpha(1)- and alpha(2)-adrenergic receptor subtypes. J Pharmacol Exp Ther 2007, 322, 214–221.
  • Vansal, S.S., Feller, D.R. Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes. Biochem Pharmacol 1999, 58, 807–810.
  • Empey, D.W., Young, G.A., Letley, E., John, G.C., Smith, P., McDonnell, K.A., Bagg, L.R., Hughes, D.T. Dose-response study of the nasal decongestant and cardiovascular effects of pseudoephedrine. Br J Clin Pharmacol 1980, 9, 351–358.
  • Jawad, S.S., Eccles, R. Effect of pseudoephedrine on nasal airflow in patients with nasal congestion associated with common cold. Rhinology 1998, 36, 73–76.
  • Eccles, R., Jawad, M.S., Jawad, S.S., Angello, J.T., Druce, H.M. Efficacy and safety of single and multiple doses of pseudoephedrine in the treatment of nasal congestion associated with common cold. Am J Rhinol 2005, 19, 25–31.
  • Loose, I., Winkel, M. Clinical, double-blind, placebo-controlled study investigating the combination of acetylsalicylic acid and pseudoephedrine for the symptomatic treatment of nasal congestion associated with common cold. Arzneimittelforschung 2004, 54, 513–521.
  • Schachtel, B.P., Voelker, M., Sanner, K.M., Gagney, D., Bey, M., Schachtel, E.J., Becka, M. Demonstration of the analgesic efficacy and dose-response of acetylsalicylic acid with pseudoephedrine. J Clin Pharmacol 2010, 50, 1429–1437.
  • Roman, M.C. Determination of ephedra alkaloids in urine and plasma by HPLC-UV: Collaborative study. J AOAC Int 2004, 87, 15–24.
  • Deventer, K., Van Eenoo, P., Baele, G., Pozo, O.J., Van Thuyne, W., Delbeke, F.T. Interpretation of urinary concentrations of pseudoephedrine and its metabolite cathine in relation to doping control. Drug Test Anal 2009, 1, 209–213.
  • Luqman, W., Danowski, T.S. The use of khat (Catha edulis) in Yemen. Social and medical observations. Ann Intern Med 1976, 85, 246–249.
  • Hoffman, R., Al’’Absi, M. Khat use and neurobehavioral functions: Suggestions for future studies. J Ethnopharmacol 2010, 132, 554–563.
  • Lin, X., Cunningham, E.T. Jr, Mu, Y., Geleziunas, R., Greene, W.C. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 1999, 10, 271–280.
  • Chiariello, M., Marinissen, M.J., Gutkind, J.S. Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-Jun promoter and to cellular transformation. Mol Cell Biol 2000, 20, 1747–1758.
  • Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T., Toriumi, W. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999, 274, 30353–30356.
  • O’’Mahony, A.M., Montano, M., Van Beneden, K., Chen, L.F., Greene, W.C. Human T-cell lymphotropic virus type 1 tax induction of biologically Active NF-κB requires IκB kinase-1-mediated phosphorylation of RelA/p65. J Biol Chem 2004, 279, 18137–18145.
  • Jiang, X., Takahashi, N., Matsui, N., Tetsuka, T., Okamoto, T. The NF-κB activation in lymphotoxin beta receptor signaling depends on the phosphorylation of p65 at serine 536. J Biol Chem 2003, 278, 919–926.
  • Buss, H., Dörrie, A., Schmitz, M.L., Hoffmann, E., Resch, K., Kracht, M. Constitutive and interleukin-1-inducible phosphorylation of p65 NF-κB at serine 536 is mediated by multiple protein kinases including IκB kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem 2004, 279, 55633–55643.
  • Adli, M., Baldwin, A.S. IKK-i/IKKepsilon controls constitutive, cancer cell-associated NF-κB activity via regulation of Ser-536 p65/RelA phosphorylation. J Biol Chem 2006, 281, 26976–26984.
  • Schmitz, M.L., Bacher, S., Kracht, M. IκB-independent control of NF-κB activity by modulatory phosphorylations. Trends Biochem Sci 2001, 26, 186–190.
  • Molkentin, J.D. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 2004, 63, 467–475.
  • Szabo, S.J., Gold, J.S., Murphy, T.L., Murphy, K.M. Identification of cis-acting regulatory elements controlling interleukin-4 gene expression in T cells: Roles for NF-Y and NF-ATc. Mol Cell Biol 1993, 13, 4793–4805.
  • Takemoto, N., Koyano-Nakagawa, N., Arai, N., Arai, K., Yokota, T. Four P-like elements are required for optimal transcription of the mouse IL-4 gene: Involvement of a distinct set of nuclear factor of activated T cells and activator protein-1 family proteins. Int Immunol 1997, 9, 1329–1338.
  • Lyakh, L., Ghosh, P., Rice, N.R. Expression of NFAT-family proteins in normal human T cells. Mol Cell Biol 1997, 17, 2475–2484.
  • Rooney, J.W., Hoey, T., Glimcher, L.H. Coordinate and cooperative roles for NF-AT and AP-1 in the regulation of the murine IL-4 gene. Immunity 1995, 2, 473–483.
  • Li-Weber, M., Giaisi, M., Baumann, S., Pálfi, K., Krammer, P.H. NF-κB synergizes with NF-AT and NF-IL6 in activation of the IL-4 gene in T cells. Eur J Immunol 2004, 34, 1111–1118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.